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Abstract – Motion planning of an autonomous mobile 
robot is involved in generating safe, optimal, short, 
and/or reasonable trajectories in its workspace and 
finally reaching its final target while avoiding collision 
with obstacles and escaping traps. This paper presents 
a new hybrid model to optimize trajectory of the global 
path of a mobile robot using a graph-based search 
algorithm associated with an ant colony optimization 
(ACO) method. Once a graph representing the robot 
workspace populated with obstacles is modelled by 
MAKLINK graph theory, Dijkstra algorithm is utilized 
to seek the sub-optimal collision-free robot trajectory. 
On the basis of the initial global sub-optimal trajectory 
generated by Dijkstra algorithm, the motion trajectory 
of the mobile robot is optimized in Cartesian space 
through the ACO method.  Most importantly, a B-
spline curve based smoothing scheme is, in a greater 
degree, applied to generate safer and smother 
trajectories with reasonable distance from obstacles. 
Results of simulation and comparison studies in various 
sorts of environments are addressed in order to 
demonstrate the superiority of the proposed hybrid 
graph-based model.   
 
Index Terms – robot path planning, bacteria foraging 
optimization, swarm intelligence, Bézier curve, trajectory 
optimization 
 
  I.INTRODUCTION 
 

OWADAYS, real-time motion planning of an 
autonomous mobile robot has constantly drawn 

attention in the robotics field for decades. Real-time 
motion planning of an autonomous robot aims to generate 
safe, optimal, short, and/or reasonable trajectories in its 
workspace and finally reach its destination while it avoids 
collision with obstacles and escaping traps. However, it is 
difficult for an autonomous robot to plan a short, optimal, 
collision-free trajectory in a short period due to the 
complexity of the robot's working environment and 
differences in operating conditions, as well as interference 
and sensor errors. Therefore, it is still an open challenge in 
robotics to plan safe and short trajectories efficiently and 
effectively for autonomous mobile robots in navigation.  

A variety of robot motion planning methods has been 
proposed. For instance, genetic algorithm (GA) [1], 
particle swarm optimization (PSO) [2], ant colony 
optimization (ACO) [3], intelligent water drops (IWD) 
algorithm [4], fuzzy logic [5], neural network [6]. Bakdi et 
al. [1] applied genetic algorithm to generate a collision-free 
optimal path then developed an adaptive fuzzy-logic 
controller to keep track of an autonomous robot on the 
planned trajectory. Nie et al. [2] proposed two improved 
particle swarm optimization (PSO), PSO with nonlinear 
inertia weight and simulated annealing PSO for mobile 
robot path planning.  PSO with nonlinear inertia weight 
coefficients optimized the global search ability and local 
search accuracy while simulated annealing PSO overcome 
some shortcomings of the basic PSO, such as easily trapped 
into the local optimum. In [3], an improved ant colony 
optimization called max-min ant system algorithm is 
applied to resolve the robot path planning problem. It 
provides a simple and effective way to execute the 
navigation of the path in an unknown environment. 
Salmanpour et al. [4] proposed a generalized intelligent 
water drops (IWD) algorithm to solve mobile robot 
navigation. It contains two different layers, which first 
layer finds best global path and second layer execute local 
search to reduce the response time. Meyer-Delius and 
Burgard [5] proposed a sample-based mapping method 
using a fuzzy k-means algorithm to find a map that 
maximizes the likelihood of the original data. Luo and 
Yang [6] developed a bio-inspired neural network method 
of intelligent robot coverage navigation model in a non-
stationary environment, which is extended to unknown 
workspace by concurrent mapping and navigation. 

Graph-based model is also one of the most used methods 
for robot path planning. Suh et al. [7] proposed an efficient 
graph-based informative path planer by adopting rapidly-
exploring random graphs and cross entropy (CE), to search 
a near-optimal informative path based on cost budget 
constraint. Luo et al. [8] developed a two-level approach, 
which is an enhanced Voronoi Diagram associated with 
Vector Field Histogram algorithm based on the LIDAR 
sensor information for real-time robot path planning. 

However, many motion planning models proposed 
previously have not taken the safety constraint into account 
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[10]. In this paper, a new hybrid model is proposed to 
optimize trajectory of the global path of a mobile robot 
using a graph-based search algorithm associated with an 
ant colony optimization (ACO) method. Initially, a graph 
representing the robot workspace populated with obstacles 
is modelled by MAKLINK graph theory.  Dijkstra 
algorithm is utilized to seek the sub-optimal collision-free 
robot trajectory.  In light of the initial global sub-optimal 
trajectory generated by the Dijkstra algorithm, the motion 
trajectory of the mobile robot is optimized in Cartesian 
space through an ACO method.  A piecewise cubic B-
spline curve based smoothing scheme is, in a greater 
degree, considered to plan safer and smother trajectories 
with reasonable distance from obstacles. The effectiveness 
of the proposed hybrid model has been validated by both 
simulations and comparison studies. 

II. ENVIRONMENT MODEL OF THE MOBILE ROBOT  

Environmental modeling refers to the construction of a 
spatial environment model that helps solve the robot's path 
planning problem. Free space is mentioning the workspace 
in which the autonomous robot can move freely in the 
environment. Therefore, in order to facilitate the 
establishment of a free space model, the following 
assumptions need to be made: 

 
1)  The spatial environment of robot is two-dimensional. 
2)  The spatial environment and obstacles are static, and 

both defined as polygon shapes. 
3)  In order to ensure a safe distance between the planned 

path and all obstacles, the obstacle boundary expands 
outward as a virtual obstacle, whose size is based on the 
minimum cross-section of the robot as well as the 
minimum detection distance of the sensor. 

4)  The robot is considered as a particle in this section, 
ignoring its size. 

 
Polygonal terrains such as obstacles in a robot 

workspace may be enclosed by a sequence of free 
MAKLINK lines. The mobile robot workspace is modeled 
as a graph as most graph-based motion planning 
mythologies. The graph of a mobile robot workspace may 
be established by finding the free MAKLINK line and lines 
of each node on every expanded virtual obstacle based on 
MAKLINK graph theory:  

1) Each free MAKLINK line is a straight line that 
connected by two vertices on two different obstacles or a 
straight line starts from the apex of the obstacle and is 
perpendicular to the environment boundary 

2) Each free MAKLINK line must not pass through any 
of the grown obstacles. 

Based on the above definitions and assumptions, the 
MAKLINK graph theory builds the environment model in 

the following order to make use of its feature:  
1) Find out all free MAKLINK lines as dash lines in 

Fig.1 according to the definition of free MAKLINK line.  
2) Get the start point 𝑆, target point 𝑇 and the middle 

points of all 𝑛  free MARKLINK lines, which can be 
denoted by 𝑣ଵ, 𝑣ଶ, ⋯ , 𝑣௡, respectively.  

3) Connect middle points on adjacent free MAKLINK 
lines; Connect the starting point 𝑆 and middle points on 
adjacent free MAKLINK lines; Connect the target 𝑇 and 
middle points on adjacent free MAKLINK lines. 

Each free link represents a collision-free trajectory for 
mobile robots as red dot lines in Fig.1. 

 
 

Fig.1 Illustration of workspace based on the MAKLINK graph theory 

III. PROPOSED ALGORITHM FOR ROBOT PATH 

PLANNINGING. 

In this section, a Dijkstra's algorithm associated with an 
improved ACO method is described to implement robot 
navigation and path planning. An adjacency matrix with 
weights is defined in this section used to compute the 
shortest path, and a smooth sche 

 
A. Initial Path Planning 

 
Dijkstra's algorithm is one of most used algorithms to 

search the shortest path on a network graph. In this section, 
this algorithm is used to find a sub-optimal path between 
the starting point 𝑆 and goal 𝑇. When using the Dijkstra 
algorithm, the cost function of a path needs to be 
calculated. The cost function can be represented as the sum 
of the length of all the line segments of the path. Generally, 
each line segment on a path will be given a weight, so the 
cost function can be defined as the sum of the weights of 
all the line segments of the path. The length of a line 



 

segment is used as its weight here. 
Before using the Dijkstra algorithm, an adjacency matrix 

with weights must be defined, which can be used to 
calculate the shortest path. Each element of the matrix 
represents the length of the straight-line segment between 
two adjacent path points  𝑣௜  and  𝑣௝ . Therefore, each 
element of the adjacency matrix can be defined as 

 

𝑎𝑑𝑗[𝑗] = ቄ
𝑙𝑒𝑛𝑔𝑡ℎ( 𝑣௜ , 𝑣௝)

∞
   

𝑖𝑓 𝑣௜ , 𝑣௝  𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 

𝑜𝑡ℎ𝑒𝑟
(1)  

 
The initial sub-optimal path, planned by Dijkstra’s 

algorithm in the MAKLINK graph, can be represented by 
path points 𝑃଴, 𝑃ଵ, 𝑃ଶ, . . . , 𝑃ௗ , and 𝑃ௗାଵ, where 𝑃଴ and 𝑃ௗାଵ 
represent the starting point 𝑆 and the goal 𝑇 respectively.  
Since these path points are the middle points of the 
corresponding free MAKLINK lines, they have poor 
performance in open areas. Therefore, the positions of the 
path points need to be adjusted and optimized on its free 
MAKLINK lines to achieve the shortest path.  

Let the free MAKLINK lines crossed by the initial path 
are 𝐿௜(𝑖 = 1,2, ⋯ , 𝑛) . Assuming that 𝑃௜

ଵ and 𝑃௜
ଶ  are the 

two endpoints of line 𝐿௜, then the location of 𝑃௜  on its free 
MAKLINK line 𝑃௜

ଵ𝑃௜
ଶ can be defined as 

 
𝑃௜(𝛾௜) = 𝑃௜

ଵ + (𝑃௜
ଶ − 𝑃௜

ଵ) × 𝛾௜ , 𝑖 = 1,2, ⋯ , 𝑛        (2) 
 
where 𝛾௜ is the scale factor, 𝛾௜ ∈ [0,1]; 𝑛 is the number of 
free MAKLINK lines. 

Obviously, a new robot path can be generated by a set of 
optimal scale factor (𝛾ଵ, 𝛾ଶ, ⋯ , 𝛾௡), thus the optimal and 
shortest path will be obtained, the objective function of the 
optimization problem can be expressed as 

 

𝐿 = ෍ 𝑙𝑒𝑛𝑔𝑡ℎ{𝑃௜(𝛾௜), 𝑃௜ାଵ(𝛾௜ାଵ)}

ௗ

௜ୀ଴

                  (3) 

 
where length {𝑃௜(𝛾௜), 𝑃௜ାଵ(𝛾௜ାଵ)}  represents the straight-
line distance between two adjacent path points 𝑃௜  and 𝑃௜ାଵ. 
 

B. Improved by ACO   
 

     Ants in ACO are intelligent agents in robot path 
planning. They use pheromone trails, which is priori 
heuristic information, to navigate from one waypoint to 
another. The ant is initially placed in a path point which is 
located on the free MAKLINK lines. Ant pheromone 
strength 𝜏௜௝(𝑡), a piece of numerical information, defined 
with each arc (𝑖, 𝑗) is updated in the ACO algorithm, in 
which 𝑡 is the iteration counter. Assume that at initial time 
𝑡 = 0 all the path points have the same pheromone strength 
𝜏଴, that is, 𝜏௜௝(0) = 𝜏଴ (𝑖 = 1, 2, . . . , 𝑑;  𝑗 = 0, 1, 2, . . . , 𝑔). 

𝑔  represents the number of equal parts of the free 
MAKLINK line. 
     In moving process, for an agent, or a mobile robot, 𝑘. 
The transition rule of an ant moving from the previous path 
point online ℎ௜ିଵ to the path point 𝑗 of the next line ℎ௜ is 
denoted by: 
 

𝑗 = ൜𝑎𝑟𝑔𝑚𝑎𝑥௨∈ఋ൛[𝜏௜௨(𝑡)][𝜂௜௨]ఉൟ

𝑈
   

𝑖𝑓 𝑞 ≤  𝑞଴

𝑖𝑓 𝑞 >  𝑞଴
          (4) 

 
where 𝛿  is the set of points {0, 1, 2, . . . , 𝑔}  on 𝑗 -th 
MAKLINK line available to be selected; 𝜏௜௨(𝑡)  is the 
pheromone strength of node 𝑛௜௨; 𝛽 determine the relative 
influence of the heuristic information; 𝑡  is the current 
number of iterations; 𝑞  is a random variable uniformly 
distributed over [0,1]; 𝑞଴  is a parameter that tunes the 
exploration and the exploitation of ACO (0 ≤ 𝑞଴ ≤ 1); 𝑈 
is a node which is selected next, which is calculated using 
the probability that the robot moves from point 𝑖 to point 𝑗  
as shown in Eq.(6). 𝜂௜௝  is the heuristic value, which is 
defined as follows: 
 

𝜂௜௝ =
1.1 − ห𝑦௜௝ − 𝑦෤௜௝ห

1.1
                              (5) 

 
where 𝑦௜௝ is the 𝑦 coordinate of node 𝑛௜௝; the values of 𝑦෤௜௝ 
in each of the following iterations are set to the values of 
parameters ℎଵ, ℎଶ, . . . , ℎௗ  which are relevant to the path 
points on the optimal robot trajectory generated by the 
ACO in the previous iteration. In the first iteration, 𝑦෤௜௝ are 
set to 0.5 according to the initial path nodes on the free 
MAKLINK lines. 
    At each iteration phase, a probabilistic action select rule 
is imposed to an agent 𝑘 . The probability of a robot 𝑘 , 
currently at waypoint 𝑖, which traverses to waypoint 𝑗 at 
the 𝑡-th iteration of the algorithm, is achieved as follows in 
Eq. (6). 

𝑝௜௎
௞ (𝑡) =

[𝜏௜௎(𝑡)]ఈ ∙ [𝜂௜௎]ఉ

∑ [𝜏௜௨(𝑡)]ఈ ∙ [𝜂௜௨]ఉ
௨∈ఋ

                    (6) 

 
where parameters 𝛼 and 𝛽 determine the relative influence 
of the pheromone trail and the heuristic information. If a 
parameter 𝜌 is defined as the pheromone trail evaporation, 
0 < 𝜌 < 1  to prevent the pheromone trails from 
accumulating unlimitedly; it allows the ACO algorithm to 
neglect unreasonably bad decisions previously made.  

At each iteration step, ∆𝜏௜௝
௞ (𝑡) the amount of pheromone 

robot 𝑘  places on the arcs it has visited is dynamically 
updated by decreasing the pheromone strength on all arcs 
by a constant factor before enabling each robot to 
supplement pheromone on the arcs. The pheromone 
strength 𝜏௜௝ is dynamically updated as Eq. (7). 

 



 

⎩
⎪
⎨

⎪
⎧

𝜏௜௝(𝑡 + 1) = (1 − 𝜌) ∙ 𝜏௜௝(𝑡) + ∆𝜏௜௝

∆𝜏௜௝ = ෍ ∆𝜏௜௝
௞

௡

௞ୀଵ

∆𝜏௜௝
௞ = 1/𝐿஻

                 (7) 

 
where 𝐿஻ is the length of the current shortest trajectory. 

IV. PIECEWISE CUBIC B-SPLINE PATH SMOOTHER 

The smoothing scheme aims to smooth the trajectory 
around the turning points in the vicinity of obstacles. The 
B-spline curve is one of the most efficient and most used 
in the smooth polyline which has closed-form expressions 
for position coordinates. However, in some cases, the 
trajectory smoothed by B-spline smoother does not quite 
match the original trajectory. Different from the 
conventional B-spline, the piecewise B-spline only 
smooths the path around each corner respectively. 
Meanwhile, in order to achieve precise path following, 
smooth steering command needs the curvature continuity 
of the trajectory. Therefore, in this paper, piecewise cubic 
B-splines curves are utilized to smooth the trajectory.  

A B-spline curve is defined by basic functions 
𝑁௜,௞(𝑢), control points 𝑃௜  and degree (𝑘 − 1), the formula 
is given by 

𝐶(𝑢) = ෍ 𝑁௜,௞(𝑢)

௡ାଵ

௜ୀଵ

𝑃௜                               (8) 

 
where 𝑃௜ = [𝑃௜௫ , 𝑃௜௬] are the (𝑛 + 1) control points and a 
knot vector 𝑢. 𝑁௜,௞(𝑢) are the basis functions, which are 
defined recursively as follows: 
 

𝑁௜,௞(𝑢) =  
(௨ି௫೔)

௫೔శೖషభି௫೔
𝑁௜,௞ିଵ(𝑢) +

(௫೔శೖି௨)

௫೔శೖି௫೔శభ
𝑁௜ାଵ,௞ିଵ(𝑢) (9) 

 

𝑁௜,௞(𝑢) = ൜
1,        𝑢௜ ≤ 𝑢 ≤ 𝑢௜ାଵ

0,             otherwise 
; 𝑢 ∈ [0,1]         (10) 

 
where with the limitation condition of the 0/0=0 for 𝑘 = 1 

In the curve smoothing procedure, in order to adapt to 
the parameterization difference, geometric continuity is 
always used to assess the smoothness of the trajectory. 𝐺ଶ 
continuity means the same tangent unit and curvature 
vector at the intersection of two continuous segments, 
which can avoid discontinuities in normal acceleration and 
make the trajectory safer for robot to follow. Therefore, 
cubic B-spline is adopted because it has the lowest degree 
to achieve 𝐺ଶ continuity. 

In order to achieve 𝐺ଶ  continuity between the inserted 
B-spline curve and the remaining straight-line segment, the 
control points 𝑃௜  of B-spline curve relative to the path point 
𝑊௜ is defined as 

𝑃ଵ = 𝑊௜ − (1 + 𝑐)𝑑ଶ𝑢௜ିଵ 
𝑃ଶ = 𝑊௜ − 𝑑ଶ𝑢௜ିଵ 
𝑃ଷ = 𝑊௜ 
𝑃ସ = 𝑊௜ + 𝑑ଶ𝑢௜ 
𝑃ହ = 𝑊௜ + (1 + 𝑐)𝑑ଶ𝑢௜                                                       (11) 

 
where 𝑐 is smoothing length ratio 𝑐 = 𝑑ଵ/𝑑ଶ, 𝑢௜ିଵ is the 
unit vector of line 𝑊௜ିଵ𝑊௜  and 𝑣௜ is the unit vector of line 
𝑊௜𝑊௜ାଵ . The sum of 𝑑ଵ  and 𝑑ଶ  is the smoothing length. 
𝜑 = 𝛼/2  is half of the corner angle. If we define knot 
vector [0,0,0,0,0.5,1,1,1,1], the smoothing error distance 𝜀 
and the maximum curvature 𝐾௠௔௫  of the smooth path can 
be analytically obtained as 
 

𝜀 =
𝑑ଶ sin(𝜑)

2
                                 (12) 

 

𝐾௠௔௫ =
4 sin(𝜑)

3𝑑ଶ cosଶ(𝜑)
                         (13) 

 
From Eq. (12) and Eq. (13) we could define the 

smoothing error distance 𝜀  by the existing maximum 
curvature 𝐾௠௔௫ given by the robots: 

 

𝜀 =
2 tanଶ(𝜑)

3𝐾௠௔௫

                               (14) 

 

 
Fig. 2 Description of the 𝐺ଶ B-spline curve 

 

The result of basic B-spline and proposed piecewise 𝐺ଶ 
B-spline smooth multiple lines with different angles, 
respectively is illustrated in Fig. 3. The path smoothed by 
the piecewise 𝐺ଶ  B-spline curve is closer to the original 
path than that smoothed by the basic B-spline curve. On the 
basis of the robot constraint, it has better performance in 
different degree of angles. The overall advantages of the 
piecewise 𝐺ଶ B-spline can be summarized as follows. 

 



 

1) The smoothed path is tangent and curvature continuity, 
namely that the robot has the smooth steering command, 
which can avoid the discontinuities of normal acceleration 
and the trajectory is safer for robot to follow. 

 

 
Fig.3 Illustration of the same path smoothed by the basic B-spline 

curve and piecewise 𝐺ଶ B-spline curve separately. 

 
2) Only the two lines at the corner will affect the smooth 
curve. The adjustment of any other paths does not affect 
the smooth curve. 
3) We could easily adjust the smoothed path based on the 
constraint of the environment or the robot (e.g. maximum 
curvature). 

V. SIMULATION AND COMPARISON STUDIES 

In this section, in order to validate the model for robot 
navigation, simulation studies will be carried out to 
compare the proposed ACO model with other algorithms. 

The graph from a robot workspace populated with 
obstacles is constructed through the MAKLINK graph 
theory. Dijkstra algorithm is employed to generate the 
suboptimal trajectory in the formed graph. The initially 
sub-optimized trajectory is further optimized through the 
ACO method. The final trajectory shown in blue line by 
smoothing scheme in Fig. 5 is generated by the proposed 
B-spline curve smoothing scheme. Finally, the MAKLINK 
graph method with improved ACO and the piecewise cubic 
B-spline path smoother are integrated to form a complete 
path planning scheme for robot navigation. 

 The proposed model is applied to a test environment 
with populated obstacles in comparison of the same test 
environment as Fig. 5 of [9] shown in Fig.4 in this context.   
The developed hybrid mode has been demonstrated to be 
effective and efficient through the simulations.  

The final trajectories planned by Dijkstra, Particle 
Swarm Optimization (PSO) model, Immune Particle 
Swarm Optimization (IPSO) model and our proposed 
model are illustrated in Fig. 4. The proposed model 

compares with other models in terms of minimum path 
length. Path length obtained by proposed ACO method in 
Fig. 5 is 11.5219. The path lengths for the trajectories 
presented in [9] were 12.2930, 12.1670 and 11.5468 
obtained by Dijkstra, PSO and IPSO methods, respectively. 
Our proposed method found 6.69% shorter than Dijkstra, 
5.60% shorter than PSO and 0.22% shorter than IPSO, 
respectively. Described results are presented in Table I.  

 
Fig.4 Illustration of robot navigation with various models. Dijkstra 

algorithm (green line); PSO model (blue line); IPSO model (blue line); 
ACO method (red line). 

TABLE I.  COMPARISON OF PATH LENGTH  

 
 
 
 
 

The established graph with obstacles of robot workspace 
through the MAKLINK graph theory is shown in Fig. 5(a). 
Once the workspace is built, the sub-optimal trajectory is 
planned by the Dijkstra algorithm shown in Fig. 5(b). The 
initially sub-optimized trajectory is further optimized 
through the ACO method, which is illustrated in Fig. 5(c). 
The final trajectory shown in blue line by smoothing 
scheme in Fig. 5(d) is generated by the proposed piece 
cubic B-spline curve smoothing scheme.  

VI. CONCLUSION 

A new hybrid model to optimize trajectory of the global 
path of a mobile robot using a graph-based search 
algorithm associated with an ant colony optimization 
(ACO) method is proposed in this paper. Dijkstra 
algorithm is used to produce the sub-optimal collision-free 
robot trajectory, before its trajectory of the mobile robot is 
optimized through the ACO method.  A piecewise cubic B-
spline curve based smoothing scheme is utilized to plan 
safer and smoother trajectories with reasonable distance 

Models Path Length 

Dijkstra 
PSO [9] 
IPSO [9] 

Proposed ACO 

12.2930 
12.1670 
11.5468 
11.5219 



 

from obstacles. The effectiveness of the proposed model 
has been validated by simulations. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5 Illustration of simulation based on the proposed model. (a) graph 
built in robot workspace by the MAKLINK graph theory; (b) sub-optimal 
trajectory planned by Dijkstra algorithm (green line); (c) optimal 
trajectory generated by ACO method (red line); (d) final trajectory shown 
in blue line by smoothing scheme (blue line). 
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