
A Graph-based Ant-like Approach to Optimal Path Planning

 Tingjun Lei1, Chaomin Luo1*, John E. Ball1, and Shahram Rahimi2

Department of Electrical and Computer Engineering1

Department of Computer Science and Engineering2

Mississippi State University
Mississippi State, USA

*Email: chaomin.luo@ece.msstate.edu

Abstract – Motion planning of an autonomous mobile
robot is involved in generating safe, optimal, short,
and/or reasonable trajectories in its workspace and
finally reaching its final target while avoiding collision
with obstacles and escaping traps. This paper presents
a new hybrid model to optimize trajectory of the global
path of a mobile robot using a graph-based search
algorithm associated with an ant colony optimization
(ACO) method. Once a graph representing the robot
workspace populated with obstacles is modelled by
MAKLINK graph theory, Dijkstra algorithm is utilized
to seek the sub-optimal collision-free robot trajectory.
On the basis of the initial global sub-optimal trajectory
generated by Dijkstra algorithm, the motion trajectory
of the mobile robot is optimized in Cartesian space
through the ACO method. Most importantly, a B-
spline curve based smoothing scheme is, in a greater
degree, applied to generate safer and smother
trajectories with reasonable distance from obstacles.
Results of simulation and comparison studies in various
sorts of environments are addressed in order to
demonstrate the superiority of the proposed hybrid
graph-based model.

Index Terms – robot path planning, bacteria foraging
optimization, swarm intelligence, Bézier curve, trajectory
optimization

 I.INTRODUCTION

OWADAYS, real-time motion planning of an
autonomous mobile robot has constantly drawn

attention in the robotics field for decades. Real-time
motion planning of an autonomous robot aims to generate
safe, optimal, short, and/or reasonable trajectories in its
workspace and finally reach its destination while it avoids
collision with obstacles and escaping traps. However, it is
difficult for an autonomous robot to plan a short, optimal,
collision-free trajectory in a short period due to the
complexity of the robot's working environment and
differences in operating conditions, as well as interference
and sensor errors. Therefore, it is still an open challenge in
robotics to plan safe and short trajectories efficiently and
effectively for autonomous mobile robots in navigation.

A variety of robot motion planning methods has been
proposed. For instance, genetic algorithm (GA) [1],
particle swarm optimization (PSO) [2], ant colony
optimization (ACO) [3], intelligent water drops (IWD)
algorithm [4], fuzzy logic [5], neural network [6]. Bakdi et
al. [1] applied genetic algorithm to generate a collision-free
optimal path then developed an adaptive fuzzy-logic
controller to keep track of an autonomous robot on the
planned trajectory. Nie et al. [2] proposed two improved
particle swarm optimization (PSO), PSO with nonlinear
inertia weight and simulated annealing PSO for mobile
robot path planning. PSO with nonlinear inertia weight
coefficients optimized the global search ability and local
search accuracy while simulated annealing PSO overcome
some shortcomings of the basic PSO, such as easily trapped
into the local optimum. In [3], an improved ant colony
optimization called max-min ant system algorithm is
applied to resolve the robot path planning problem. It
provides a simple and effective way to execute the
navigation of the path in an unknown environment.
Salmanpour et al. [4] proposed a generalized intelligent
water drops (IWD) algorithm to solve mobile robot
navigation. It contains two different layers, which first
layer finds best global path and second layer execute local
search to reduce the response time. Meyer-Delius and
Burgard [5] proposed a sample-based mapping method
using a fuzzy k-means algorithm to find a map that
maximizes the likelihood of the original data. Luo and
Yang [6] developed a bio-inspired neural network method
of intelligent robot coverage navigation model in a non-
stationary environment, which is extended to unknown
workspace by concurrent mapping and navigation.

Graph-based model is also one of the most used methods
for robot path planning. Suh et al. [7] proposed an efficient
graph-based informative path planer by adopting rapidly-
exploring random graphs and cross entropy (CE), to search
a near-optimal informative path based on cost budget
constraint. Luo et al. [8] developed a two-level approach,
which is an enhanced Voronoi Diagram associated with
Vector Field Histogram algorithm based on the LIDAR
sensor information for real-time robot path planning.

However, many motion planning models proposed
previously have not taken the safety constraint into account

N

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

[10]. In this paper, a new hybrid model is proposed to
optimize trajectory of the global path of a mobile robot
using a graph-based search algorithm associated with an
ant colony optimization (ACO) method. Initially, a graph
representing the robot workspace populated with obstacles
is modelled by MAKLINK graph theory. Dijkstra
algorithm is utilized to seek the sub-optimal collision-free
robot trajectory. In light of the initial global sub-optimal
trajectory generated by the Dijkstra algorithm, the motion
trajectory of the mobile robot is optimized in Cartesian
space through an ACO method. A piecewise cubic B-
spline curve based smoothing scheme is, in a greater
degree, considered to plan safer and smother trajectories
with reasonable distance from obstacles. The effectiveness
of the proposed hybrid model has been validated by both
simulations and comparison studies.

II. ENVIRONMENT MODEL OF THE MOBILE ROBOT

Environmental modeling refers to the construction of a
spatial environment model that helps solve the robot's path
planning problem. Free space is mentioning the workspace
in which the autonomous robot can move freely in the
environment. Therefore, in order to facilitate the
establishment of a free space model, the following
assumptions need to be made:

1) The spatial environment of robot is two-dimensional.
2) The spatial environment and obstacles are static, and

both defined as polygon shapes.
3) In order to ensure a safe distance between the planned

path and all obstacles, the obstacle boundary expands
outward as a virtual obstacle, whose size is based on the
minimum cross-section of the robot as well as the
minimum detection distance of the sensor.

4) The robot is considered as a particle in this section,
ignoring its size.

Polygonal terrains such as obstacles in a robot

workspace may be enclosed by a sequence of free
MAKLINK lines. The mobile robot workspace is modeled
as a graph as most graph-based motion planning
mythologies. The graph of a mobile robot workspace may
be established by finding the free MAKLINK line and lines
of each node on every expanded virtual obstacle based on
MAKLINK graph theory:

1) Each free MAKLINK line is a straight line that
connected by two vertices on two different obstacles or a
straight line starts from the apex of the obstacle and is
perpendicular to the environment boundary

2) Each free MAKLINK line must not pass through any
of the grown obstacles.

Based on the above definitions and assumptions, the
MAKLINK graph theory builds the environment model in

the following order to make use of its feature:
1) Find out all free MAKLINK lines as dash lines in

Fig.1 according to the definition of free MAKLINK line.
2) Get the start point 𝑆, target point 𝑇 and the middle

points of all 𝑛 free MARKLINK lines, which can be
denoted by 𝑣ଵ, 𝑣ଶ, ⋯ , 𝑣௡, respectively.

3) Connect middle points on adjacent free MAKLINK
lines; Connect the starting point 𝑆 and middle points on
adjacent free MAKLINK lines; Connect the target 𝑇 and
middle points on adjacent free MAKLINK lines.

Each free link represents a collision-free trajectory for
mobile robots as red dot lines in Fig.1.

Fig.1 Illustration of workspace based on the MAKLINK graph theory

III. PROPOSED ALGORITHM FOR ROBOT PATH

PLANNINGING.

In this section, a Dijkstra's algorithm associated with an
improved ACO method is described to implement robot
navigation and path planning. An adjacency matrix with
weights is defined in this section used to compute the
shortest path, and a smooth sche

A. Initial Path Planning

Dijkstra's algorithm is one of most used algorithms to

search the shortest path on a network graph. In this section,
this algorithm is used to find a sub-optimal path between
the starting point 𝑆 and goal 𝑇. When using the Dijkstra
algorithm, the cost function of a path needs to be
calculated. The cost function can be represented as the sum
of the length of all the line segments of the path. Generally,
each line segment on a path will be given a weight, so the
cost function can be defined as the sum of the weights of
all the line segments of the path. The length of a line

segment is used as its weight here.
Before using the Dijkstra algorithm, an adjacency matrix

with weights must be defined, which can be used to
calculate the shortest path. Each element of the matrix
represents the length of the straight-line segment between
two adjacent path points 𝑣௜ and 𝑣௝ . Therefore, each
element of the adjacency matrix can be defined as

𝑎𝑑𝑗[𝑗] = ቄ
𝑙𝑒𝑛𝑔𝑡ℎ(𝑣௜ , 𝑣௝)

∞

𝑖𝑓 𝑣௜ , 𝑣௝ 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

𝑜𝑡ℎ𝑒𝑟
(1)

The initial sub-optimal path, planned by Dijkstra’s

algorithm in the MAKLINK graph, can be represented by
path points 𝑃଴, 𝑃ଵ, 𝑃ଶ, . . . , 𝑃ௗ , and 𝑃ௗାଵ, where 𝑃଴ and 𝑃ௗାଵ
represent the starting point 𝑆 and the goal 𝑇 respectively.
Since these path points are the middle points of the
corresponding free MAKLINK lines, they have poor
performance in open areas. Therefore, the positions of the
path points need to be adjusted and optimized on its free
MAKLINK lines to achieve the shortest path.

Let the free MAKLINK lines crossed by the initial path
are 𝐿௜(𝑖 = 1,2, ⋯ , 𝑛) . Assuming that 𝑃௜

ଵ and 𝑃௜
ଶ are the

two endpoints of line 𝐿௜, then the location of 𝑃௜ on its free
MAKLINK line 𝑃௜

ଵ𝑃௜
ଶ can be defined as

𝑃௜(𝛾௜) = 𝑃௜

ଵ + (𝑃௜
ଶ − 𝑃௜

ଵ) × 𝛾௜ , 𝑖 = 1,2, ⋯ , 𝑛 (2)

where 𝛾௜ is the scale factor, 𝛾௜ ∈ [0,1]; 𝑛 is the number of
free MAKLINK lines.

Obviously, a new robot path can be generated by a set of
optimal scale factor (𝛾ଵ, 𝛾ଶ, ⋯ , 𝛾௡), thus the optimal and
shortest path will be obtained, the objective function of the
optimization problem can be expressed as

𝐿 = ෍ 𝑙𝑒𝑛𝑔𝑡ℎ{𝑃௜(𝛾௜), 𝑃௜ାଵ(𝛾௜ାଵ)}

ௗ

௜ୀ଴

 (3)

where length {𝑃௜(𝛾௜), 𝑃௜ାଵ(𝛾௜ାଵ)} represents the straight-
line distance between two adjacent path points 𝑃௜ and 𝑃௜ାଵ.

B. Improved by ACO

 Ants in ACO are intelligent agents in robot path
planning. They use pheromone trails, which is priori
heuristic information, to navigate from one waypoint to
another. The ant is initially placed in a path point which is
located on the free MAKLINK lines. Ant pheromone
strength 𝜏௜௝(𝑡), a piece of numerical information, defined
with each arc (𝑖, 𝑗) is updated in the ACO algorithm, in
which 𝑡 is the iteration counter. Assume that at initial time
𝑡 = 0 all the path points have the same pheromone strength
𝜏଴, that is, 𝜏௜௝(0) = 𝜏଴ (𝑖 = 1, 2, . . . , 𝑑; 𝑗 = 0, 1, 2, . . . , 𝑔).

𝑔 represents the number of equal parts of the free
MAKLINK line.
 In moving process, for an agent, or a mobile robot, 𝑘.
The transition rule of an ant moving from the previous path
point online ℎ௜ିଵ to the path point 𝑗 of the next line ℎ௜ is
denoted by:

𝑗 = ൜𝑎𝑟𝑔𝑚𝑎𝑥௨∈ఋ൛[𝜏௜௨(𝑡)][𝜂௜௨]ఉൟ

𝑈

𝑖𝑓 𝑞 ≤ 𝑞଴

𝑖𝑓 𝑞 > 𝑞଴
 (4)

where 𝛿 is the set of points {0, 1, 2, . . . , 𝑔} on 𝑗 -th
MAKLINK line available to be selected; 𝜏௜௨(𝑡) is the
pheromone strength of node 𝑛௜௨; 𝛽 determine the relative
influence of the heuristic information; 𝑡 is the current
number of iterations; 𝑞 is a random variable uniformly
distributed over [0,1]; 𝑞଴ is a parameter that tunes the
exploration and the exploitation of ACO (0 ≤ 𝑞଴ ≤ 1); 𝑈
is a node which is selected next, which is calculated using
the probability that the robot moves from point 𝑖 to point 𝑗
as shown in Eq.(6). 𝜂௜௝ is the heuristic value, which is
defined as follows:

𝜂௜௝ =
1.1 − ห𝑦௜௝ − 𝑦෤௜௝ห

1.1
 (5)

where 𝑦௜௝ is the 𝑦 coordinate of node 𝑛௜௝; the values of 𝑦෤௜௝
in each of the following iterations are set to the values of
parameters ℎଵ, ℎଶ, . . . , ℎௗ which are relevant to the path
points on the optimal robot trajectory generated by the
ACO in the previous iteration. In the first iteration, 𝑦෤௜௝ are
set to 0.5 according to the initial path nodes on the free
MAKLINK lines.
 At each iteration phase, a probabilistic action select rule
is imposed to an agent 𝑘 . The probability of a robot 𝑘 ,
currently at waypoint 𝑖, which traverses to waypoint 𝑗 at
the 𝑡-th iteration of the algorithm, is achieved as follows in
Eq. (6).

𝑝௜௎
௞ (𝑡) =

[𝜏௜௎(𝑡)]ఈ ∙ [𝜂௜௎]ఉ

∑ [𝜏௜௨(𝑡)]ఈ ∙ [𝜂௜௨]ఉ
௨∈ఋ

 (6)

where parameters 𝛼 and 𝛽 determine the relative influence
of the pheromone trail and the heuristic information. If a
parameter 𝜌 is defined as the pheromone trail evaporation,
0 < 𝜌 < 1 to prevent the pheromone trails from
accumulating unlimitedly; it allows the ACO algorithm to
neglect unreasonably bad decisions previously made.

At each iteration step, ∆𝜏௜௝
௞ (𝑡) the amount of pheromone

robot 𝑘 places on the arcs it has visited is dynamically
updated by decreasing the pheromone strength on all arcs
by a constant factor before enabling each robot to
supplement pheromone on the arcs. The pheromone
strength 𝜏௜௝ is dynamically updated as Eq. (7).

⎩
⎪
⎨

⎪
⎧

𝜏௜௝(𝑡 + 1) = (1 − 𝜌) ∙ 𝜏௜௝(𝑡) + ∆𝜏௜௝

∆𝜏௜௝ = ෍ ∆𝜏௜௝
௞

௡

௞ୀଵ

∆𝜏௜௝
௞ = 1/𝐿஻

 (7)

where 𝐿஻ is the length of the current shortest trajectory.

IV. PIECEWISE CUBIC B-SPLINE PATH SMOOTHER

The smoothing scheme aims to smooth the trajectory
around the turning points in the vicinity of obstacles. The
B-spline curve is one of the most efficient and most used
in the smooth polyline which has closed-form expressions
for position coordinates. However, in some cases, the
trajectory smoothed by B-spline smoother does not quite
match the original trajectory. Different from the
conventional B-spline, the piecewise B-spline only
smooths the path around each corner respectively.
Meanwhile, in order to achieve precise path following,
smooth steering command needs the curvature continuity
of the trajectory. Therefore, in this paper, piecewise cubic
B-splines curves are utilized to smooth the trajectory.

A B-spline curve is defined by basic functions
𝑁௜,௞(𝑢), control points 𝑃௜ and degree (𝑘 − 1), the formula
is given by

𝐶(𝑢) = ෍ 𝑁௜,௞(𝑢)

௡ାଵ

௜ୀଵ

𝑃௜ (8)

where 𝑃௜ = [𝑃௜௫ , 𝑃௜௬] are the (𝑛 + 1) control points and a
knot vector 𝑢. 𝑁௜,௞(𝑢) are the basis functions, which are
defined recursively as follows:

𝑁௜,௞(𝑢) =
(௨ି௫೔)

௫೔శೖషభି௫೔
𝑁௜,௞ିଵ(𝑢) +

(௫೔శೖି௨)

௫೔శೖି௫೔శభ
𝑁௜ାଵ,௞ିଵ(𝑢) (9)

𝑁௜,௞(𝑢) = ൜
1, 𝑢௜ ≤ 𝑢 ≤ 𝑢௜ାଵ

0, otherwise
; 𝑢 ∈ [0,1] (10)

where with the limitation condition of the 0/0=0 for 𝑘 = 1

In the curve smoothing procedure, in order to adapt to
the parameterization difference, geometric continuity is
always used to assess the smoothness of the trajectory. 𝐺ଶ
continuity means the same tangent unit and curvature
vector at the intersection of two continuous segments,
which can avoid discontinuities in normal acceleration and
make the trajectory safer for robot to follow. Therefore,
cubic B-spline is adopted because it has the lowest degree
to achieve 𝐺ଶ continuity.

In order to achieve 𝐺ଶ continuity between the inserted
B-spline curve and the remaining straight-line segment, the
control points 𝑃௜ of B-spline curve relative to the path point
𝑊௜ is defined as

𝑃ଵ = 𝑊௜ − (1 + 𝑐)𝑑ଶ𝑢௜ିଵ
𝑃ଶ = 𝑊௜ − 𝑑ଶ𝑢௜ିଵ
𝑃ଷ = 𝑊௜
𝑃ସ = 𝑊௜ + 𝑑ଶ𝑢௜
𝑃ହ = 𝑊௜ + (1 + 𝑐)𝑑ଶ𝑢௜ (11)

where 𝑐 is smoothing length ratio 𝑐 = 𝑑ଵ/𝑑ଶ, 𝑢௜ିଵ is the
unit vector of line 𝑊௜ିଵ𝑊௜ and 𝑣௜ is the unit vector of line
𝑊௜𝑊௜ାଵ . The sum of 𝑑ଵ and 𝑑ଶ is the smoothing length.
𝜑 = 𝛼/2 is half of the corner angle. If we define knot
vector [0,0,0,0,0.5,1,1,1,1], the smoothing error distance 𝜀
and the maximum curvature 𝐾௠௔௫ of the smooth path can
be analytically obtained as

𝜀 =
𝑑ଶ sin(𝜑)

2
 (12)

𝐾௠௔௫ =
4 sin(𝜑)

3𝑑ଶ cosଶ(𝜑)
 (13)

From Eq. (12) and Eq. (13) we could define the

smoothing error distance 𝜀 by the existing maximum
curvature 𝐾௠௔௫ given by the robots:

𝜀 =
2 tanଶ(𝜑)

3𝐾௠௔௫

 (14)

Fig. 2 Description of the 𝐺ଶ B-spline curve

The result of basic B-spline and proposed piecewise 𝐺ଶ
B-spline smooth multiple lines with different angles,
respectively is illustrated in Fig. 3. The path smoothed by
the piecewise 𝐺ଶ B-spline curve is closer to the original
path than that smoothed by the basic B-spline curve. On the
basis of the robot constraint, it has better performance in
different degree of angles. The overall advantages of the
piecewise 𝐺ଶ B-spline can be summarized as follows.

1) The smoothed path is tangent and curvature continuity,
namely that the robot has the smooth steering command,
which can avoid the discontinuities of normal acceleration
and the trajectory is safer for robot to follow.

Fig.3 Illustration of the same path smoothed by the basic B-spline

curve and piecewise 𝐺ଶ B-spline curve separately.

2) Only the two lines at the corner will affect the smooth
curve. The adjustment of any other paths does not affect
the smooth curve.
3) We could easily adjust the smoothed path based on the
constraint of the environment or the robot (e.g. maximum
curvature).

V. SIMULATION AND COMPARISON STUDIES

In this section, in order to validate the model for robot
navigation, simulation studies will be carried out to
compare the proposed ACO model with other algorithms.

The graph from a robot workspace populated with
obstacles is constructed through the MAKLINK graph
theory. Dijkstra algorithm is employed to generate the
suboptimal trajectory in the formed graph. The initially
sub-optimized trajectory is further optimized through the
ACO method. The final trajectory shown in blue line by
smoothing scheme in Fig. 5 is generated by the proposed
B-spline curve smoothing scheme. Finally, the MAKLINK
graph method with improved ACO and the piecewise cubic
B-spline path smoother are integrated to form a complete
path planning scheme for robot navigation.

 The proposed model is applied to a test environment
with populated obstacles in comparison of the same test
environment as Fig. 5 of [9] shown in Fig.4 in this context.
The developed hybrid mode has been demonstrated to be
effective and efficient through the simulations.

The final trajectories planned by Dijkstra, Particle
Swarm Optimization (PSO) model, Immune Particle
Swarm Optimization (IPSO) model and our proposed
model are illustrated in Fig. 4. The proposed model

compares with other models in terms of minimum path
length. Path length obtained by proposed ACO method in
Fig. 5 is 11.5219. The path lengths for the trajectories
presented in [9] were 12.2930, 12.1670 and 11.5468
obtained by Dijkstra, PSO and IPSO methods, respectively.
Our proposed method found 6.69% shorter than Dijkstra,
5.60% shorter than PSO and 0.22% shorter than IPSO,
respectively. Described results are presented in Table I.

Fig.4 Illustration of robot navigation with various models. Dijkstra

algorithm (green line); PSO model (blue line); IPSO model (blue line);
ACO method (red line).

TABLE I. COMPARISON OF PATH LENGTH

The established graph with obstacles of robot workspace
through the MAKLINK graph theory is shown in Fig. 5(a).
Once the workspace is built, the sub-optimal trajectory is
planned by the Dijkstra algorithm shown in Fig. 5(b). The
initially sub-optimized trajectory is further optimized
through the ACO method, which is illustrated in Fig. 5(c).
The final trajectory shown in blue line by smoothing
scheme in Fig. 5(d) is generated by the proposed piece
cubic B-spline curve smoothing scheme.

VI. CONCLUSION

A new hybrid model to optimize trajectory of the global
path of a mobile robot using a graph-based search
algorithm associated with an ant colony optimization
(ACO) method is proposed in this paper. Dijkstra
algorithm is used to produce the sub-optimal collision-free
robot trajectory, before its trajectory of the mobile robot is
optimized through the ACO method. A piecewise cubic B-
spline curve based smoothing scheme is utilized to plan
safer and smoother trajectories with reasonable distance

Models Path Length

Dijkstra
PSO [9]
IPSO [9]

Proposed ACO

12.2930
12.1670
11.5468
11.5219

from obstacles. The effectiveness of the proposed model
has been validated by simulations.

(a)

(b)

(c)

(d)

Fig. 5 Illustration of simulation based on the proposed model. (a) graph
built in robot workspace by the MAKLINK graph theory; (b) sub-optimal
trajectory planned by Dijkstra algorithm (green line); (c) optimal
trajectory generated by ACO method (red line); (d) final trajectory shown
in blue line by smoothing scheme (blue line).

REFERENCES
[1] A. Bakdi, A. Hentout, H. Boutami, A. Maoudj, O. Hachour, and B.

Bouzouia, “Optimal path planning and execution for mobile robots
using genetic algorithm and adaptive fuzzy-logic control,” Rob.
Auton. Syst., vol. 89, pp. 95–109, May 2017.

[2] Z. Nie, X. Yang, S. Gao, Y. Zheng, J. Wang, and Z. Wang,
“Research on autonomous moving robot path planning based on
improved particle swarm optimization,” in Proc. of 2016 IEEE
Congress on Evolutionary Computation, 2016, pp. 2532–2536.

[3] V. D. C. Santos, F. S. Osorio, C. F. M. Toledo, F. E. B. Otero, and
C. G. Johnson, “Exploratory path planning using the Max-min ant
system algorithm,” in Proc. 2016 IEEE Congr. Evol. Comput. 2016,
pp. 4229–4235, 2016.

[4] S. Salmanpour, H. Omranpour, and H. Motameni, “An intelligent
water drops algorithm for solving robot path planning problem,” in
Proc. of 14th IEEE Int. Symp. Comput. Intell. Informatics, pp. 333–
338, 2013.

[5] D. Meyer-Delius and W. Burgard, “Maximum-likelihood sample-
based maps for mobile robots,” Rob. Auton. Syst., vol. 58, no. 2, pp.
133–139, Feb. 2010.

[6] C. Luo and S. X. Yang, “A bioinspired neural network for real-time
concurrent map building and complete coverage robot navigation in
unknown environments,” IEEE Trans. Neural Networks, vol. 19, no.
7, pp. 1279–1298, Jul. 2008.

[7] J. Suh, K. Cho, and S. Oh, “Efficient graph-based informative path
planning using cross entropy,” in Proc. of 2016 IEEE 55th Conf.
Decis. Control. CDC 2016, no. Cdc, pp. 5894–5899, 2016.

[8] C. Luo, M. Krishnan, M. Paulik, B. Cui, and X. Zhang, “A novel
lidar-driven two-level approach for real-time unmanned ground
vehicle navigation and map building,” in Proc. of Intelligent Robots
and Computer Vision XXXI Algorithms and Techniques, 2014, vol.
9025, p. 902503.

[9] Y. Q. Wang and X. P. Yu, “Research for the robot path planning
control strategy based on the immune particle swarm optimization
algorithm,” Proc. - 2012 Int. Conf. Intell. Syst. Des. Eng. Appl.
ISDEA 2012, no. 10826098, pp. 724–727, 2012.

[10] C. Luo, S. X. Yang, X. Li, and M. Q.-H. Meng, Neural Dynamics
Driven Complete Area Coverage Navigation Through Cooperation
of Multiple Mobile Robots, IEEE Trans. on Industrial Electronics,
vol. 64, no. 1, pp. 750-760, 2017.

