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Abstract— Recently proposed Probabilistic 
Intuitionistic Fuzzy c-Means Algorithm (PIFCM) is a 
Probabilistic Euclidian distance measure (PEDM) based 
clustering technique, which incorporate computation of 
probabilistic intervals ,࢐࢏ࡼ) (࢐࢏ࡽ for each of the data point. 
PIFCM algorithm employs a random membership 
function ૚

|࢞| and discards a data point if its membership 
value is uniformly distributed in the clusters. Fuzzy 
clustering always gets affected by the choice of the 
membership function. Accordingly, in PIFCM algorithm, 
membership function changes the properties of the data 
limiting its capabilities in giving consistent clustering 
results. Moreover, PIFCM algorithm incorporatescomputation of redundant matrices while finding ࢐࢏ࡼ and
.࢐࢏ࡽ In this paper, we propose some novel changes in the 
existing PIFCM algorithm, and hence introduce our 
Improved PIFCM algorithm. The improved PIFCM 
algorithm considers the min-max normalization as 
membership function, and also removes the redundant 
matrix computation that was used to find the ࢐࢏ࡼ and  in the original PIFCM. Results over various UCI datasets ࢐࢏ࡽ
validates the superiority of our improved PIFCM 
algorithm over FCM algorithm, IFCM algorithm and 
PIFCM algorithm.  

Keywords — Fuzzy clustering, AIFS based clustering, 
probabilistic interval, PEDM, PIFCM, IFCM. 

I. INTRODUCTION
Clustering is an unsupervised technique for data analysiswhich partition the data into groups or subsets. Data elementsin the same group share some common properties, and dataelements in different groups mostly differs along all theproperties. While clustering, maximum inter-cluster distanceand minimum intra-cluster distance, is preferred. Clusteringhas been useful in various fields such as pattern recognition,data mining, information retrieval and so on [1], [2].  
The concept of fuzzy sets (FSs), was introduced by Zadehin 1965 [11]. FSs have been applied to the clustering domainby various researchers. Real-valued datasets does not accountfor the uncertainty present in the data. However, variousvariants of FSs, like type-2 Fuzzy sets [3], AtanassovIntuitionistic Fuzzy sets (AIFS) [4], interval type-2 fuzzy sets[5], vague sets [6], and many others [21], can depict theuncertainty in data to different extents.  
Clustering is broadly classified as hard clustering or softclustering. Hard clustering assigns data points to a singlecluster i.e. each data can only belong to one cluster, whilefuzzy or soft clustering assigns a data point to multiple clusters

with a membership grade for a cluster. Membership gradedetermines the belongingness of data point to a particularcluster. Fuzzy clustering algorithms such as fuzzy c-means(FCM) [7], intuitionistic fuzzy c-means (IFCM) [8], [22]probabilistic intuitionistic fuzzy c-means (PIFCM) [9],intuitionistic fuzzy λ-cutting clustering algorithm [23] etc., hascontributed significantly in the field of image analysis, datamining, and pattern recognition, etc.  
FCM is an iterative algorithm based on the idea of k-means algorithm [10]. It re-computes the cluster centroidsuntil the algorithm converges. In FCM, FSs are used torepresent the data, and traditional Euclidian distance measureis used to compute the distance between two FSs. IFCM is anextension of FCM which uses AIFSs to represent the data [4].It uses normalized Euclidian distance measure to computedistance between two AIFSs. Because AIFSs incorporate theuncertainty caused due to hesitancy, researchers have foundAIFSs quite useful in clustering and many other machinelearning problems [8], [9], [22]-[24].   
The Recently developed FCM algorithms such asmodified FCM [17], PIFCM [9], modified IFCM [18],modified IFCM incorporating hesitation degree [19], localinformation based improved IFCM [20], and many othersimprove either the objective function or the weight fordistance measure or the constraints. Among them, the PIFCMis a recently proposed IFCM variant which also uses AIFSs torepresent the data. The PIFCM algorithm uses probabilisticEuclidean distance measure (PEDM) [9] as proximity function(distance measure) to compute the distance between two dataobjects.  
PEDM finds probabilistic weights for membership, non-membership and hesitance value from the dataset. Computedprobabilistic weights are the mean of the mutual confidenceinterval between two data points. A mutual confidence interval can be seen as the agreement between two data objects. It is 

found through parameters ௜ܲ௝  and ௜ܳ௝  proposed in PIFCM. 
Algorithms for ௜ܲ௝  and ௜ܳ௝  compute confidence intervals for 
each of the data object and finds mutual confidence interval for membership and non-membership values, respectively,between each pair of data objects which is then used fordistance computation. However, for any FCM basedclustering algorithm, only the distance between a data pointand the cluster centroids is computed. So, in PIFCM, 
redundant matrices are computed while computing ௜ܲ௝  and 
ܳ௜௝ , and hence increasing the cost and time of the algorithm. 

Also, the membership function (MF) used in PIFCM was ଵ
|௫|, which is not a good choice, as it changes the properties 
present in the data. Mathematically, for ݔ ∈ [0,1] , the membership value will be greater than 1, and for very large
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valued  ݔ, membership value for x diminishes. How the MF ଵ
|௫| changes the properties of data is shown in Fig. 1. Here, plot 
with blue line shows the original data, and plot with red line 
shows the transformation made by the MF ଵ

|௫|. Fig. 1(a) is the 
plot for ݕ = ݕ whereas Fig. 1(b) is the plot for ,ݔ = PIFCM algorithm also claims that data points should beexcluded if membership values are uniformly distributedwhich is a bad practice. To compute mutual interval, we onlyneed to find the probabilistic intervals between the data pointsand the cluster centroids for membership and non-membershipcomponents instead of the probabilistic intervals between eachof the data points. We also need to use a different membershipfunction which transforms the data into [0,1] .(ݔ)݊݅ݏ  but does notchange the data properties.  

Therefore, in this paper, we propose an improvement ofthe PIFCM algorithm, and accordingly term it as the‘improved PIFCM algorithm’. The improved PIFCM employsmin-max normalization as membership function which transforms the data into [0,1]. It also ensures cost and space 
effective computation of ௜ܲ௝ and ௜ܳ௝. We have also included 
every datapoint in the computation, falsifying the claim of excluding the data points in case of uniformly distributedmembership values in the PIFCM. Comparison among theFCM, IFCM, PIFCM and the proposed improved PIFCMalgorithms have shown that the proposed algorithmoutperforms its existing counterparts. In summary, the majorcontribution of the proposed algorithm are as follows: 
1. A new cost and space effective technique to compute ௜ܲ௝

and ܳ௜௝  which in turn computes the PEDM effectively.
2. PIFCM algorithm claimed that the data points with

uniformly distributed membership function values over
more than one cluster should be excluded. However, this
paper doesn’t exclude any data points, and accordingly,
formed clusters have shown good clustering accuracy.

3. Improved PIFCM algorithm employs min-max normal-
ization function as the membership function which does
not change the properties of the dataset, rather transform 
it to [0,1] without changing the data properties. 
The rest of the paper is organized as follows: Section-IIcontains the pre-requisites required for the Improved PIFCMalgorithm, Section-III contains the details of the proposedalgorithm, Section-IV contains the experimental results andSection-V contains the summary and the future directions ofthe proposed work. 

II. PRE-REQUISITES
A. Fuzzy Sets (FSs): For an element ݔ  in the universe of
discourse ܺ, a FS ܣ in regard to ݔ can be defined as [11]: 

ܣ = ,ݔۦ} ݔ|ۧ(ݔ)஺ߤ ∈ ܺ} 
Here, ߤ஺(ݔ): ܺ → [0,1] is the membership function. The non-
membership function ݒ஺(ݔ) can be defined in terms of ߤ஺(ݔ) 
as: ݒ஺(ݔ) = 1 −  (ݔ)஺ߤ
B. Atanassov Intuitionistic Fuzzy Sets (AIFSs): Let ݔ be an 
element in the universe of discourse ܺ(≠ ∅). The AIFS ܣ  for 
the elements ݔ can be defined as [4]: 

ܣ = ,ݔ〉} ,(ݔ)஺ߤ ݔ〈(ݔ)஺ݒ ∈ ܺ} (1) 

Here, ߤ஺(ݔ): ܺ → [0,1]  is the membership function and ݒ஺(ݔ): ܺ → [0,1]  is the non-membership function which 
satisfies: 0 ≤ (ݔ)஺ߤ + (ݔ)஺ݒ ≤ 1 
Hesitance degree, ߨ஺(ݔ) of an element x is defined as: 

(ݔ)஺ߨ = 1 − (ݔ)஺ߤ −  (ݔ)஺ݒ
C. Distance Measure between AIFS: A function݀: (ܣ)ܵܨܫܣ × (ܤ)ܵܨܫܣ → [0,1] acts as a distance measure 
between two ݏܵܨܫܣ ܺ  and ܻ , if it satisfies the following 
properties [12]: 

1) 0 ≤ ݀(ܺ, ܻ) ≤ 1 
2) ݀(ܺ, ܻ) = 0  only when ܺ = ܻ
3) ݀(ܺ, ܻ) = ݀(ܻ, ܺ)            
4) For AIFSs ܺ ⊆ ܻ ⊆ ܼ, distance measure follows:

݀(ܺ, ܼ) ≥ ݀(ܺ, ܻ) and ݀(ܺ, ܼ) ≥ ݀(ܻ, ܼ).    (2)
D. Probabilistic Euclidian Distance Measure (PEDM): It is
a Euclidean distance-based adaptive distance measure [9]. It
computes probabilistic weights from the datasets. PEDM~݀ଶ(ܣଵ, ଶ can be defined asܣ ଵ andܣ ଶ) between two AIFSsܣ
follows: 

~݀ଶ(ܣଵ, (ଶܣ = ቂ ଵ
ଶ௡ ∑ ቀ݌ଵଶ൫ߤ஺ଵ(ݔ௜) − ൯ଶ(௜ݔ)஺ଶߤ +௡௜ୀଵ

(௜ݔ)஺ଵߥଵଶ൫ݍ − ൯ଶ(௜ݔ)஺ଶߥ + ,ଵܣ)ߩ (௜ݔ)஺ଵߨଶ)൫ܣ −
൯ଶቁቃ(௜ݔ)஺ଶߨ

భ
మ  (3) 

Here, ݌ଵଶ ∈ ௠௜௡ᇱ݌] , ௠௔௫ᇱᇱ݌ ] ଵଶݍ , ∈ ௠௜௡ᇱݍ] , ௠௔௫ᇱᇱݍ ] andܣ)ߩଵ, .ଶ) are the weights associated with the membership, thenon-membership and the hesitance components, respectivelyܣ
The intervals [݌௠௜௡ᇱ , ௠௔௫ᇱᇱ݌ ]  and [ݍ௠௜௡ᇱ , ௠௔௫ᇱᇱݍ ]  are the confidence intervals and ܣ)ߩଵ,  :ଶ. The intervals are computed as followsܣ ଵandܣ ଶ)is the correlation betweenܣ

p’(A12) = max(pmin(A1), pmin(A2)), 
p”(A12) = min(pmax(A1), pmax(A2)) 
q’(A12) = max(qmin(A1), qmin(A2)), 
q”(A12) = min(qmax(A1), qmax(A2)). 

E. AIFS generation
In the literature, there are quite a few techniques forgenerating AIFSs, e.g. Yager’s generating function [13], [14],[25], and Meenakshi et al.’s IFS generating function [26]. Inthis paper, AIFS is generated for real valued data points usingYager’s generating function. The generation technique isdefined as follows: 

(ݔ)஺ߤ =  (4) [0,1]߳ߞ ,(ݔ)ℎߞ
(ݔ)ݒ = (1 − ℎ(ݔ)ఈ)భ

ഀ (5) 

(a)  (b) 
Fig. 1 Change in data with ଵ

|௫| membership function 



PIFCM algorithm choses ℎ(ݔ) to be ଵ
|௫| which causes loss 

of information. In this paper, we have chosen ℎ(ݔ) as the min-max normalization i.e. 
ℎ(ݔ) = ௫೔ି௫೔೘೔೙

௫೔೘ೌೣି௫೔೘೔೙
Also, for ߞ =  :from Eq. (5) may be as follows (ݔ)஺ߤ ,1

(ݔ)஺ߤ = ௫೔ି௫೔೘೔೙
௫೔೘ೌೣି௫೔೘೔೙  (6) 

and  ݒ஺(ݔ) = ቀ1 − ௫೔ି௫೔೘೔೙
௫೔೘ೌೣି௫೔೘೔೙

ఈቁ
భ
ഀ

Hence, using eq. (1) AIFS ܣ is written as: 
ܣ = ቊൽݔ, ௫೔ି௫೔೘೔೙

௫೔೘ೌೣି௫೔೘೔೙ , ቀ1 − ௫೔ି௫೔೘೔೙
௫೔೘ೌೣି௫೔೘೔೙

ఈቁ
భ
ഀඁ ݔ ∈ ܺቋ  (7)

F. Intuitionistic Fuzzy c-Means Algorithm (IFCM)
Euclidian Distance measure [15] acts as the proximity 
function in IFCM [8]. In IFCM algorithm, AIFSs are used to 
represent the real valued data points. IFCM clusters ݌ data 
points, where each data point is in n-th dimension, into ܿ 
clusters. The objective function for IFCM is given below: 

min ܬ௠ = ∑ ∑ ௜௝௠݀́௜௝ଶ௖௝ୀଵ௣௜ୀଵݑ
s.t.     ∑ ௜௝௖௝ୀଵݑ = 1,1 ≤ ݆ ≤ ܿ

௜௝ݑ ≥ 0,1 ≤ ݅ ≤ ,݌ 1 ≤ ݆ ≤ ܿ (8) 

෍ ௜௝ݑ
௣

௜ୀଵ
> 0,1 ≤ ݆ ≤ ܿ

Here, ݑ௜௝  acts as a partition matrix which contains 
membership of i-th data point into j-th cluster, ݀́௜௝ଶ  is the 
Euclidian distance measure which is used to compute the 
distance between i-th data point and j-th cluster centroid, and݉ ∈ [1, ∞]is the fuzzifier constant that controls how fuzzy 
the cluster will be. 
G. Probabilistic Intuitionistic Fuzzy c-Means Algorithm

(PIFCM)
PIFCM is an extension of IFCM algorithm, it uses PEDM as 
the proximity function [9]. Each of the n-dimension of the 
data point is represent by using an AIFS. PIFCM algorithm 
also clusters p data points into c clusters. The objective 
function for PIFCM algorithm is given below: 

min ܬ௠ = ∑ ∑ ௜௝௠~݀௜௝ଶ௖௝ୀଵ௣௜ୀଵݑ  
s.t.     ∑ ௜௝௖௝ୀଵݑ = 1,1 ≤ ݆ ≤ ܿ

௜௝ݑ ≥ 0,1 ≤ ݅ ≤ ,݌ 1 ≤ ݆ ≤ ܿ (9) 
෍ ௜௝ݑ

௣

௜ୀଵ
> 0,1 ≤ ݆ ≤ ܿ 

Here, ~݀௜௝ଶ  is the PEDM which also computes the distance 
between i-th data point and j-th cluster centroid, ௜௝ݑ is the 
partition matrix which has entries of belongingness of i-th 
data point into j-th cluster and m is the fuzzifier constant. 
H. Algorithm for finding ௜ܲ௝  [9]
Pij is a parameter used as a weight for membership 
component in the PEDM. It is computed as follows: 
Step 1: Assign membership for each of the ݊ attributes of ݌ 
data objects. Find the set ܥ =

,(ଵݔ)ᇱߤ} ,(ଶݔ)ᇱߤ … , {(௡ݔ)ᇱߤ which contains the set of 
minimum membership value for each attribute. 
Step 2: Find the sum of the set C, S=∑ ௡௜ୀଵߤ ᇱ  .(௜ݔ)
Step 3: If ܵ ≠ 0 , then for each attribute ݌(ݔ௜) = ఓᇲ(௫೔)

ௌ ;
otherwise, ݌(ݔ௜) = 1. 
Step 4: Compute the minimum probability for each object ܣ௝. 

௝൯ܣ௠௜௡൫݌ = ෍ (௜ݔ)஺ೕߤ(௜ݔ)݌
௡

௜ୀଵ
Step 5: Compute maximum probability for ܣ௝ as follows: 

௝൯ܣ௠௔௫൫݌ = ௝൯ܣ௠௜௡൫݌ + ෍ (௜ݔ)஺ೕߨ(௜ݔ)݌
௡

௜ୀଵ
Step 6: Derive the mutual confidence interval between each
of the data objects (for ௜ܣ and (௝ܣ as follows: 

௜௝݌  = ௜ܣ൫݌ ,  ௝൯ܣ
= ቊ[݌′൫݆݅ܣ൯, ൯݆݅ܣ൫′݌ ൯] if݆݅ܣ൫"݌ ≤ (݆݅ܣ)"݌

,൯݆݅ܣ൫"݌] otherwise          ,[(݆݅ܣ)′݌
I. Algorithm for finding ܳ௜௝  [9]
Qij is a parameter used as a weight for non-membership 
component in the PEDM. It is computed as follows: 
Step 1: Compute the non-membership for each of the ݊ 
attributes of ݌ data objects using Eq. (7). Find the set ܥ ,(ଵݔ)ᇱݒ}= ,(ଶݔ)ᇱݒ … , {(௡ݔ)ᇱݒ which contains the set of
minimum membership value for each attribute. 
Step 2: Find the sum of the set C, ܵ’ = ∑ ௡௜ୀଵݒ ᇱ  .(௜ݔ)
Step 3: if ܵ ≠ 0 , then for each attribute ݍ(ݔ௜) = ௩ᇲ(௫೔)

ௌᇱ ;
otherwise, ݍ(ݔ௜) = 1. 
Step 4: Compute the minimum probability for each object ܣ௝. 

௝൯ܣ௠௜௡൫ݍ = ෍ (௜ݔ)஺ೕߤ(௜ݔ)ݍ
௡

௜ୀଵ
Step 5: Compute maximum probability for ܣ௝  as:

௝൯ܣ௠௔௫൫ݍ = ௝൯ܣ௠௜௡൫ݍ + ෍ (௜ݔ)஺ೕߨ(௜ݔ)ݍ
௡

௜ୀଵStep 6: Derive mutual confidence interval between each 
of the data objects (for ܣ௜  and ܣ௝) as: 

ݍ  = ௜ܣ൫ݍ ,  ௝൯ܣ

= ቊ[ݍ′൫݆݅ܣ൯, ൯݆݅ܣ൫′ݍ ൯]      if݆݅ܣ൫"ݍ ≤ (݆݅ܣ)"ݍ
,൯݆݅ܣ൫"ݍ] otherwise                    ,[(݆݅ܣ)′ݍ

III. PROPOSED WORK
In this section, we have explained our proposed ImprovedProbabilistic Intuitionistic Fuzzy c-Means (Improved PIFCM)Algorithm. This section also contains the algorithms to findcomputational and space effective probabilistic intervalsbetween the data points and the cluster centroids. Thealgorithms used to find the probabilistic intervals for the data points are given in the Section III-A, whereas in the Section 



III.B, we provide the flowchart and the pseudocode of the Improved PIFCM algorithm. 
A. Probabilistic intervals of the data points

To compute the ௜ܲ௝  and ܳ௜௝, defined in the Sections II.H 
and II.I, using the membership function defined in Eq. (6), each of the attribute will have 0 (in case of minimum value)and 1 (in case of maximum value) membership value in anyone of the p data points. So, the ݌(ݔ௜) for ௜ܲ௝  and ݍ(ݔ௜) for ܳ௜௝component in the PIFCM algorithm will always be 1 for eachattribute, and hence will have a fixed value. Also, we do notneed to compute the confidence interval between two dataobjects; rather between a data object and the cluster centroids.Hence, Step 6 in both of the algorithms is redundant. 

Algorithm 1 computes the confidence interval[݌௠௜௡, [௠௔௫݌  for the membership values. The mutualconfidence between a data point and the cluster centroids canbe computed while computing the PEDM. The mean of themutual interval is taken as the weight for the membershipcomponent. 
Algorithm 1: Algorithm for finding the [݌௠௜௡,  [௠௔௫݌
1: Find the minimum probability value for each object 

݆)௝ܣ = 1,2,3 … , ,(݌  :௝൯ as followsܣ௠௜௡൫݌
௝൯ܣ௠௜௡൫݌ = ∑ ௡௜ୀଵ(௜ݔ)஺௝ߤ .      

2: Compute the maximum probability value for each 
object ܣ௝, ݌௠௔௫൫ܣ௝൯ as follows: 

௝൯ܣ௠௔௫൫݌ = ௝൯ܣ௠௜௡൫݌ + ∑ ௡௜ୀଵ(௜ݔ)஺௝ߨ , 
 where ߨ஺௝(ݔ௜) = 1 − ቀߤ஺௝(ݔ௜) +  .ቁ(௜ݔ)஺௝ݒ

Similarly, we can compute the confidence interval[ݍ௠௜௡ , [௠௔௫ݍ  for the non-membership value using theAlgorithm 2. 
Algorithm 2: Algorithm for finding the [ݍ௠௜௡ ,   [௠௔௫ݍ
1: Compute the minimum probability value for each object 

݆)௝ܣ = 1,2,3 … ,  :௝൯ as followsܣ௠௜௡൫ݍ ,(݌
௝൯ܣ௠௜௡൫ݍ  = ∑ ௡௜ୀଵ(௜ݔ)஺௝ݒ . 
2: Calculate the maximum probability value for each object 

௝ܣ ,  :௝൯ as followsܣ௠௔௫൫ݍ
௝൯ܣ௠௔௫൫ݍ = ௝൯ܣ௠௜௡൫ݍ + ∑ ௡௜ୀଵ(௜ݔ)஺௝ߨ , 

 where ߨ஺௝(ݔ௜) = 1 − ቀߤ஺௝(ݔ௜) +  .ቁ(௜ݔ)஺௝ݒ
Improvement in computational time and space: 
 Probability measure defined in the PIFCM algorithm has arunning time of ܱ(݌ଶ݊)  while the running time for theImproved PIFCM proposed here is ܱ(ܿ݊݌). The spacerequirement for PIFCM is ܱ(݌ଶ)  while in our proposedmethod, it is ܱ(ܿ݌). 
B. Improved Probabilistic Intuitionistic Fuzzy c-Means

Algorithm (Improved PIFCM):
Here, we introduce our proposed Improved ProbabilisticIntuitionistic Fuzzy c-Means (Improved PIFCM) Algorithm.Improved PIFCM  uses the confidence intervals [݌௠௜௡ , [௠௔௫݌

and [ݍ௠௜௡, [௠௔௫ݍ  proposed in the Section III.A to find themutual confidence for weights in the PEDM. It uses
membership function defined in Eq. (6) instead of ଵ

|௫| of the 
PIFCM. Fig. 1 gives the flowchart for the proposed ImprovedPIFCM algorithm and Algorithm 3 gives its pseudocode. 

Along with the PIFCM algorithm, the proposed ImprovedPIFCM algorithm is also an iterative algorithm which computes new seeds with each iteration until the algorithm 
converges. Here, ~݀ଶଶ is the PEDM defined in Eq. (3), ݑ௜௝ is the 
partition matrix, ܵ(ݔ)  is the set of cluster centroid at x iteration, ܽ݌݋݃ݒ is the average operator used to compute thenext set of cluster centroids. 

Improved PIFCM algorithm is an extension of PIFCMwhich finds better clusters efficiently. First, the ImprovedPIFCM algorithm randomly initializes cluster centroids, thencomputes the partition matrix over these cluster centroids. Itrepeatedly computes the cluster centroids and the partitionmatrix until the algorithm converges. 

Fig. 1 Flowchart of the Improved PIFCM 

Algorithm 3: Improved PIFCM Algorithm 
1: Initialize ݉, ∈, ܿ, ,ܣ ݔ = 0and choose initial seeds 

ܵ(0) 
2: Compute partition matrix, (ݎ)ܯ = ቀݑ௜௝(ݎ)ቁ௣×௖such

that, 
a) If  ∃݆ ∧ ݅ for which ~݀ଶଶ ቀܣ௜ , ௝ܵ(ݎ)ቁ = 0, then assign

௜௝ݑ = 1 and ݑ௜௝ = 0∀݆ ≠ ݇.
b) Otherwise,

௜௝ݑ  = ଵ

∑ ൭೏~మమቀಲ೔,ೄೕቁ
೏~మమ൫ಲ೔,ೄೖ൯൱

మ೘షభ೎ೖసభ

 

3: Compute the next seeds ܵ(ݔ + 1), 
ݔ)ܵ  + 1) = { ଵܵ(ݔ + 1), ܵଶ(ݔ + 2), … , ௖ܵ(ݔ + 1)} 

 ௜ܵ(ݔ + 1) = ݌݋݃ݒܽ ቀܣ, ݔ)௝ݓ + 1)ቁ , 1 ≤ ݆ ≤ ܿ,  
 where ܽ݌݋݃ݒ is the average operator of PIFCM. 
Also,       ݓ௝ = ൜ ௨೔ೕ೘

∑ ௨೔ೕ೘೛೔సభ
, 1 ≤ ݅ ≤  .ൠ݌

4: Check if ܶ(ݔ, ݔ + 1) = ∑ ௗ~మ൫ௌೖ(௥),ௌೖశభ(௥)൯
௖

௖௞ୀଵ < ߳. If 
it holds, jump to Step 5; otherwise, increment ݔ and 
jump to Step 3. 

5: END. 

IV. EXPERIMENTAL RESULTS
In this section, we have explained the results of ourImproved PIFCM algorithm over various UCI datasets. Wehave compared the proposed improved PIFCM with FCM,IFCM, PIFCM algorithms. We have compared the time takenby the PIFCM and the Improved PIFCM algorithms to showthat proposed algorithm is computationally feasible andadvantageous. Table I gives the details of the datasets used forthe comparison. 



A. Clustering Accuracy over various UCI datasets:
Clustering accuracy: Clustering accuracy is one of themost used criteria to compare the results of a clusteringalgorithm. We have used clustering accuracy to compare theperformance of FCM, IFCM, PIFCM and proposed ImprovedPIFCM. Mathematically, clustering accuracy can be definedas follows: 
Clustering accuracy = ே௨௠௕௘௥௢௙௖௢௥௥௘௖௧௟௬௖௟௔௦௦௜௙௜௘ௗ௦௔௠௣௟௘௦

௧௢௧௔௟௡௨௠௕௘௥௢௙௦௔௠௣௟௘௦  
TABLE I.  USED UCI DATASETS 

Dataset No of 
instances 

No of 
features 

No of 
classes 

Balance scale 625 4 3
Breast Cancer 569 30 2 
Car 
Evaluation 

1728 6 4
Dermatology 366 34 6 
Ecoli 336 7 8
Glass 214 9 6 
Image 
Segmentation 

2310 19 7
Iris 150 4 3 
Ionosphere 351 33 2
Seeds 210 7 3 
Wine 178 13 3
Zoo 101 17 7 

TABLE II.  CLUSTERING ACCURACY OVER VARIOUS UCI DATASETS 
Datasets FCM 

(%) 
IFCM 
(%) 

PIFCM
(%) 

Improved  
PIFCM (%) 

IRIS 90.67 92.67 94.00 94.67 
m=2.1 m=3.6, 0.55=ߙ 

m=1.1, 0.50=ߙ 
m=3.7, 0.40=ߙ 

ZOO 83.168 92.08 92.08 92.08 
m=1.8 m=1.5, 0.40=ߙ 

m=1.6, 0.05=ߙ 
m=1.6, 0.60=ߙ 

WINE 93.25 93.82 56.18 96.07 
m=3.9 m=2.7, 0.85=ߙ 

m=3.9, 0.65=ߙ 
m=1.3, 0.05=ߙ 

BREAST  
CANCER  

92.09 94.20 62.74 94.38 
m=1.2 m=1.8, 0.35=ߙ 

m=1.1, 0.05=ߙ 
m=2.8, 0.35=ߙ 

BALANCE
SCALE  

71.2 77.76 68.16 79.2 
m=1.9 m=1.7, 0.95=ߙ 

m=1.1,  0.05=ߙ 
m=2.0, 0.75=ߙ 

SEEDS 90.47 91.43 63.81 90.48 
m=2.7 m=1.1, 0.65=ߙ 

m=4.0, 0.50=ߙ 
m=3.6, 0.55=ߙ 

IMAGE  SEGMEN- 
TATION  

64.81 69.28 28.76 69.67 
m=2.8 m=2.3, 0.55=ߙ 

m=2.8, 0.05=ߙ 
m=2.1, 0.55=ߙ 

Car  Evaluation
76.04 81.08 70.03 81.14 
m=1.2 m=1.5, 0.5=ߙ 

m=1.3, 0.55=ߙ 
m=1.1, 0.80=ߙ 

Dermatology 
 Dataset  

89.34 92.90 92.07 92.90 
m=2.8 m=1.4, 0.05=ߙ 

m=1.3, 0.05=ߙ 
m=1.3, 0.05=ߙ 

Ionosphere  70.94 71.23 64.39 71.23 
m=1.1 m=2.3, 0.65=ߙ 

m=1.7, 0.20=ߙ 
m=1.2, 0.7=ߙ 

Ecoli 79.46 84.82 73.51 84.82 
m=3.6 m=1.6, 0.30=ߙ 

m=2.7, 0.05=ߙ 
m=1.5, 0.50=ߙ 

Table II shows the clustering accuracies of the algorithmsover various UCI datasets [16]. From the Table II it can beseen that, except the SEEDS dataset, clustering result of ourproposed improved PIFCM algorithm outperforms all theexisting counterparts in terms of the clustering accuracy. Forthe SEEDS dataset, IFCM algorithm gives better clusteringaccuracy than other three algorithms.   
 Why PIFCM algorithm performs poorly in most of the

datasets present in the Table II?
 The poor performance of the PIFCM algorithm over Wine,Breast Cancer, Seeds, Image Segmentation and other datasets is because of the membership function it used. PIFCM uses 
the membership function of ଵ

|௫| . In the above mentioned 
datasets, there exists a number of difficulties with thismembership function, such as: 
 Many attributes of the above mentioned datasets have the

domain of [0,1]. Since, the values of the attributes are
less than 1, the membership value will be greater than 1,
which is a contradiction. Also, this results in negative
non-membership value, which leads to negative weights
for PEDM and complex distance between the data points.
Accordingly, it affects the clustering accuracy.

 Many attributes in the datasets have the domain
consisting of positive and negative values. The
membership values of negative real-valued data is mixed
with the positive real-valued data, and hence causes low
clustering accuracy.

 Table III comparatively provides the running time of thePIFCM algorithm and the proposed improved PIFCMalgorithm. From the Table III, we can see that running time ofproposed PIFCM algorithm is significantly less than therunning time of the PIFCM algorithm. It supports thatproposed probabilistic interval in the Section III.A iscomputationally feasible. 
TABLE III.  COMPARISON OF RUNNING TIMES OF THE PIFCM ALGORITHM 

AND THE PROPOSED IMPROVED PIFCM ALGORITHM 
Datasets PIFCM (Seconds) Improved  PIFCM (Seconds) 
IRIS 0.09 0.05 
ZOO 0.17 0.15 
WINE 4.84 0.07 
BREAST CANCER  1.54 0.55 
BALANCE SCALE 1.42 0.35 
SEEDS 0.31 0.18 
IMAGE  
SEGMENTATION

73.82 3.35 
Car Evaluation  
 

27.44 1.04 
Dermatology Dataset  1.84 0.96 
Ionosphere 1.16 0.14 
Ecoli 1.41 0.78 

 Consider an example for Image Segmentation dataset, 
where, no of data points = 2310. Here, PIFCM algorithm finds 
redundant matrices while computing ௜ܲ௝ and ܳ௜௝ . Size of the 
redundant matrix = 2310 × 2310. Also, PIFCM algorithm 
computes two matrices, each of size 2310 × 2310 in each 
iteration. Then it computes the confidence intervals between 
the data points and the cluster centroids of size 2310×7. On 
the other hand, proposed Improved PIFCM algorithm 
computes mutual confidence intervals between the data points 
and the cluster centroids of size 2310×7. Therefore, proposed 



Improved PIFCM algorithm computes 10,672,200 (2 ×
2310 × 2310) less mutual confidence intervals and hence, 
computationally is more efficient than the existing PIFCM 
algorithm. 

V. SUMMARY
In this paper, we have proposed the Improved PIFCM 
algorithm which improves the recently proposed PIFCM 
algorithm over various fronts. Here, we have shown the 
drawbacks of the PIFCM algorithm and have proposed 
techniques which are computationally effective. Efficiently 
computed weights have also led to the efficient computation 
of the PEDM. Proposed algorithm highlights the importance 
of choosing a good membership function and creates better 
clustering results. We have chosen min-max normalization as 
the membership function; a better membership function can 
also be incorporated. Improved PIFCM algorithm along with 
PIFCM algorithm is highly dependent on cluster centroids 
initialization. Improved PIFCM algorithm fails in the case of 
noisy data. A normally distributed-PIFCM algorithm may 
create good clustering results. So, initialized and normally 
distributed Improved PIFCM algorithm can be a good 
direction for future work. 
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