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Abstract—To estimate time complexity for a given algorithm
is important for algorithm designers. Usually, time complexity
means the “analytical” time complexity which needs to be proved
by strict math derivation. We propose to estimate the “numerical”
time complexity (NTC), which measures the minimum number
of operations an algorithm has to spend, as well as capture
the intrinsic laws of time complexity. The unique challenges
include: (1) How to make a machine learning model has the same
ability as a real-world CPU (2) How to measure the minimum
number of required arithmetic operations for a given problem.
To tackle these challenges, we first propose a memory-based
recurrent calculation network to mimic the functions of CPU
and then we propose a self-adaptive selection gate for deciding
when the mimic calculation process should stop. In addition,
we use a symbolic learning method to find the time complexity
formula. We train and test our model on four basic algorithms:
long integer addition, 1-dim max-pooling, outer product, and
sorting. Experiment results demonstrate that our model can
precisely predict the numerical time complexity as well as the
time complexity formula for each algorithm. We also conduct
many visualizations to prove the effectiveness and correctness of
our model.

I. INTRODUCTION

When designing an algorithm, we have to try hard to make
the time complexity as low as possible. But the analytical time
complexity has to be calculated via a lot of math derivation.
To alleviate the burden of time complexity calculation, we
propose a new task, which estimates the numerical time
complexity [NTC] (the minimum number of operation steps)
for a given problem.

In our task, we take the input-output examples of a certain
algorithm as the input of our model, and the model should be
designed to answer the two questions: “how many operations
at least should the given problem cost” and “what intrinsic
law of time complexity does the given problem has.”

As far as we have studied, no previous work has proposed
any methods for estimating time complexity or capturing the
“intrinsic laws” of time complexity for a given problem. To
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Fig. 1. An example of estimating the numerical time complexity of adding
5-digit numbers.

take a specific example, in Figure 1, there is an addition task
for 4-digit numbers. We would like to take one-digit addition
as an elementary operation, and we can see that in Figure 1, it
takes us 5 steps to obtain the final result. So in this case, the
numerical time complexity is 5. Similarly, for 5-digit numbers
addition, the numerical time complexity would be 6. When
a model takes different lengths of input into consideration, it
may find that n-digit addition task may have a time complexity
of n+ 1.

In general, there are several challenges for designing a
numerical time complexity estimator:

(1) The generalization ability to different kinds of arithmetic
operations: we hope that our model can act as a real CPU,
which is easy to be generalized to many arithmetic operations.

(2) The judgment of when the program mimic process
should stop: we hope that our model can find a proper stop
point where the given problem can be solved successfully
(which means the calculated result of each given input is
exactly the same as the given output).

Some end-to-end approaches can learn simple arithmetic
operations in a step-by-step manner, such as neural GPU [10],
Neural Turing machine [5] and Lie-Access Neural Turing
machine [16]. However, their architectures did not fully mimic
the real CPU’s architecture, which makes them fail to complete
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Fig. 2. The procedure of an algorithm composed of neural elementary operation.

some particular tasks such as max-pooling, outer product and
sort.

To tackle these challenges, we follow the model of Neural
Turing Machine [5] and propose a memory-based recurrent
calculation network (MRCN) to estimate the numerical time
complexity. MRCN use an LSTM-RNN architecture to mimic
the performing process of assembly instructions. On the other
hand, a series of memory network structures are also applied
to mimic memories and registers of a real CPU. The neural
mimic of CPU guarantees that MRCN can handle different
kinds of arithmetic operation. In addition, we designed a
self-adaptive selection gate for finding the numerical time
complexity of the given problem. We conduct experiments
on four basic algorithms: long integer addition, 1-dim max-
pooling, outer product and sorting, and our model achieves
good performance on all the four problems. Our model not
only correctly predicts the numerical time complexity of the
four problems, the general equations of time complexity are
also captured.

II. RELATED WORK

To the best of our knowledge, we are the first to research
about estimating time complexity for algorithms. Similar re-
search topics includes neural program generation [2], [3] and
neural algorithm learning [1], [5], [10], [11], [13], [14].

Neural program generation means to use neural network
methods to generate code lines for specific problems. AI
programmer [3] uses a genetic algorithm to search for a code
sequence which can lead to the correct output. Deep coder [2]
use a similar procedure, which takes neural network as a guide
to search for a program with a set of input-output examples.
However, due to the large search space, search based program
generating methods have to limit the possible operations to a
small scope and prevent the generated program from being too
long.

Neural algorithm learning methods tend to learn “implicit
code” and information of these codes are hidden in the neural
network weights. Nearly all of these kinds of works take
memory architecture as a component of the model. Neural
Turing Machines (NTM) [5] is a differentiable end-to-end
model which learn a series of read, write and memory ac-
cess sequence. NTM uses attention mechanism to access the
memory. The reinforcement learning version of NTM [18]
uses reinforce algorithm to learn a “hard attention” to access
the memory and has achieved reasonable performance. On the
other hand, hierarchical attentive memory [1] uses hierarchical
attention to learn a series of basic sequence transformations.
Differentiable neural computer (DNC) [6] has multiple read

heads and uses a “linkage-based addressing” mechanism to
track consecutively used memory slots, which is an improve-
ment of NTM. Also, Lie Access Neural Turing Machine
(LANTM) [16] stores the memories in a Euclidean key space
and uses a Lie group to manipulate the access to the memory.

Stack, Queue, DeQueue networks [7], [9] extends LSTM
with a stack, a FIFO queue or a double-ended queue and has
achieved good performance on several tasks such as sequence
copying and bigram flipping.

Neural RAM [13] controls the shifting of pointers to an
external variable-size random-access memory. Similarly, [17]
use pointers to access non-differential memories and use
reinforcement learning to train this model. An advantage is
that they can guarantee constant time memory access.

Grid LSTM [11] and Neural GPU [10] can learn to mul-
tiply 15-digit decimal numbers. Among them, Neural GPU
is especially suited for parallel computation. These models
can be trained end-to-end and can correctly work out simple
arithmetic problems.

Also, there are models which need to be trained by synthetic
execution traces, such as NPI [15] and recursive NPI [4].
However, due to their requirement of strong supervision in
the form of execution traces, they are not easy to be trained
only be input-output examples.

Different from them, our work focuses on estimating the
numerical time complexity for a given problem. In addition,
we propose to use a symbolic learning method to capture
the intrinsic law of the time complexity of a given problem.
Our model mimics the currently multi-core CPU which have
multiple read heads and multiple write heads with a register
structure for the storage of intermediate result. These mechan-
ics make it possible for our model to complete an elementary
operation in one read-write action.

III. ESTIMATING THE NUMERICAL TIME COMPLEXITY

A. Basic Calculation Process

According to its definition, time complexity is usually
estimated by counting the number of elementary operations
performed by an algorithm. Since an elementary operation
takes a fixed amount of time to perform, the amount of time
cost by the algorithm and the number of elementary operations
differ by at most a constant factor.

To avoid the math derivation when computing analytical
time complexity, we propose to count the number of necessary
elementary operations for numerical time complexity. Usually,
elementary operation means a set of operations including read-
ing from memory and writing into the memory. Therefore, in
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this scenario, an elementary operation can represent nearly ev-
ery one-digit arithmetic operation such as add, minus, multiply,
shift, bitwise, compare, etc. Thus an algorithm can be regarded
as a combination of many such elementary operations.

In this paper, we use a calculator cell to model the el-
ementary operation as a neural version. After the input of
the algorithm has been written into the memory, we use a
calculator cell to decide on which place should the information
be read from and where the calculated result should be written
into. This process can continue for several iterations, and
then we read the memory for the final result. The number
of iterations is the numerical time complexity of the given
problem. So our task is to estimate the minimum number of
iterations under the precondition that the neural algorithm can
make every example right. The process of the neural algorithm
is shown in Figure 2.

B. Memory-based Recurrent Calculation Network

In our model, the calculator cell is composed of a controller
and a memory dispatcher, and it uses a register and a state to
manipulate the read and write operations on the memory as is
shown in Figure 3 . The memory M is a multi-column memory
with |r| columns for read and |w| columns for write. Some
columns are both for read and write, so the actual column
number can be less than |r| + |w|. The size of the memory
is |M |. Similar to the real CPU architecture, the register
vector rt represents for a group of registers, which records
some intermediate result. The state records the calculation
process which include 5 variants: the read content Cr(t),
the output gate ot, the hidden state ht, the pointer position
Pt and the deviant of pointer dp(t). The read content Cr(t)
represents what has just been read from the memory. ot and
ht are the same as in LSTM cell [8]. The pointer position
Pt contains a bunch of read pointers and write pointers:
Pt = [r1, · · · , r|r|, w1, · · · , w|w|], these pointers represents the
memory position where the model intends to read or write.
And the deviant of pointer dp(t) has the same size as Pt, which
measures the movement of each pointer in each time step.

Note that register is very important for many tasks like add
and sort because they always require a structure to store the
carry bit or the swap operation’s temporary variant. On the
other hand, single memory would make the read/write heads
confused about the storage boundary of different inputs and
output. Our multi-column memory provides more reasonable
data storage so that tasks like outer product can be easily
completed.

1) Controller: The controller is an LSTM cell, which takes
the register and part of the state (read content, output gate and
hidden state) as input. We concatenate all the inputs together
as:

It−1 = [rt−1, Cr(t−1), ot−1, ht−1] (1)

And the controller’s output and hidden state can be calcu-
lated as: itftot

c̃t

 =

 σ
σ
σ

tanh

 (WL ·
[
ht−1

It−1

]
+ bL) (2)

ct = it � c̃t + ft � ct−1 (3)

ht = ot � tanh(ct) (4)

Where it, ft and c̃t represent for the LSTM’s input gate, forget
gate and memory cell, respectively.

Since the controller manipulates everything in the calcu-
lation process, we need to use a linear layer to analyze the
implicit information in ot. As is shown in Figure 3, we
have five different variants in ot: the write content Cw, two
temperature variants βr, βw, the deviant of pointer dptr and
the register value Rt. Cw is the value what controller is going
to write into the memory. βr and βw decides how “sharp” is
a distribution, the larger β∗ is, the sharper the distribution is.
dptr represents the pointer movement of the next time step. Rt

will be written into the register as the latest value.
2) Memory dispatcher: As is illustrated in Figure 3, the

memory dispatcher takes the write content, the current pointer
position, the pointer deviant, and the two temperature variants
as input. The memory dispatcher controls the reading and
writing operations on multi-column memory according to the
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Fig. 4. The architecture of memory dispatcher.

read heads and write heads. The read heads are calculated
according to the sum of current pointer Pt−1 and the deviant
dp(t−1), we select the read pointers r1, · · · , r|r| from the sum
and transform them to a series of sharp distributions as is
shown in Figure 4. The distribution Ari ∈ R|M | is calculated
as follows:

Ari =
exp{sr(i)}∑
j exp{sr(j)} ; sr(j) = −βr(j − ri)2 (5)

According to Eq 5, in vector Ari , the value corresponds to po-
sition ri is the largest and it becomes smaller as the distance to
position ri gets longer. Specifically, βr is a trainable parameter,
which can be used to tune the sharpness of the distribution,
Ari will become closer and closer to one-hot vector as βr gets
larger and larger. Therefore, when we multiply the distribution
Ari and the i-th column readable memory, we obtain the i-th
read value:

Cr(t)(i) = Ari ∗Mr(i) (6)

Similarly, the write heads are calculated according to the
current pointer Pt−1, and the write distribution is calculated
as:

Awi
=

exp{sw(i)}∑
j exp{sw(j)} ; sw(j) = −βw(j − wi)

2 (7)

The write content Cw contains |w| values. We write the i-th
content into the memory as follows:

Mw(t)(i) = Cw(i) ∗Awi
+Mw(t−1)(i) ∗ (1−Awi

) (8)

Besides, we would like to point out that our MRCN is
inspired by the Neural Turing Machine [NTM] [5] and Differ-
ential Neural Computer [DNC] [6]. NTM contains a controller
to manipulate the movement of a read head and a write head.
Likewise, we design the controller as a much more powerful
component mimics the currently multi-core CPU, which can
simultaneously manipulate the movement of multiple read

heads and multiple write heads by the pointer deviant. DNC
uses a “linkage-based addressing” to tract consecutively used
memory slot. Although efficient in some tasks, it is different
from the architecture of a real CPU, which is not convenient
for us to estimate the time complexity. Therefore, we use the
deviant of the pointer as a mimic of the real CPU architecture.

C. Self-adaptive Selection Gate

We propose a self-adapted selection gate to select a mini-
mum time step number to finish a given problem.

For estimating the numerical time complexity, we first
assume that the time complexity satisfies an equation, an
example of polynomial complexity is shown as follows:

C(n) = na + b (9)

where n is the input vector’s length, a and b are trainable
parameters. Also, the complexity function can be logarithm-
like: C(n) = nc(log2 n)d + b. NTC is the value of C(n).

Then we set an maximum step number L, which guarantees
C(n) < L. And then we use the same method as in Eq 5 and
Eq 7 to generate a self-adaptive selection gate gn ∈ RL with
the sharpest position at C(n).

gn =
exp{sg(i)}∑
j exp{sg(j)} ; sg(j) = −β(j − C(n))2 (10)

…
M

CCCCCC CC

gn

M M M … M

ky � ỹ·k2

Jn

⌦C(n)

Fig. 5. The gate selection process. “CC” represents for the calculator cell,
“M” represents for the memory.



where β is a trainable parameter. As is shown in Figure 5, in
each time step t, we can read an output vector ỹt from the
writable memory. Given the input-output example (x, y), we
can calculate the loss at input length n as:

Jn =
∑
t

||y − ỹnt||2gn(t) (11)

During the training process, gn can be tuned to guarantee the
sharpest position has the lowest loss.

D. Training

For each input length n, we have a corresponding training
objective Jn. We split the input x into separate digits. Note
that x may contain multiple numbers,

x = {x1, x2, · · · }
= {{x1(1), · · · , x1(n)}, {x2(1), · · · , x2(n)}, · · · }

where xi(j) is a 10-dim one-hot vector represents for the j-th
digit (count from the lowest digit) of the i-th input number. For
example, the first digit of number 12345 is 5. After we input
one digit, we put it into the corresponding readable memory
by directly copying. The training input-output examples can
be of any length, and then for each length n we use calculator
cell to deal with the memory for Ln times. Finally, we use
the self-adaptive selection gate to obtain Jn. The general loss
function is as follows:

J =
∑
i

Ni

(
Ji + λC(i)

)
(12)

where Ni is the number of examples with length i. The
regularization term is to find the minimal numerical time
complexity. We used Adam [12] as the optimization algorithm.

IV. EXPERIMENTS

In this section, we conduct experiments to show that our
model can successfully learn arithmetic algorithms and ex-
actly predicts the numerical time complexity. We start with
four tasks we focused on: long integer addition, 1-dim max-
pooling, outer product, and sorting. For evaluation, we create
standard datasets for each of the four tasks. Then, to demon-
strate the generality of the model, we present a series of “train
short test long” experiments to show its effect on much more
challenging tasks.

add pool outer product sort
Neural GPU

√ √
− −

NTM − − −
√

Lie-NTM
√

− −
√

MRCN-reg −
√ √

−
MRCN (1M)

√
− − −

MRCN
√ √ √ √

TABLE I
THE PERFORMANCE OF DIFFERENT CALCULATION MODELS ON 4 TASKS.√

MEANS THE MODEL CAN ACHIEVE AN EM OF 100% ON THIS TASK.
“-REG” MEANS TO EXCLUDE THE REGISTER STRUCTURE. “(1M)” MEANS
ONLY HAVE ONE MEMORY, THE READ HEADS AND WRITE HEAD ARE ALL

ON THE SAME MEMORY.

A. Dataset

Since the four tasks are all concrete arithmetic algorithms
with a precise definition, it’s very easy to automatically
generate a large dataset. For different tasks, the digit numbers
of input and output may be different. Given two integer inputs
of length n, the output of the addition algorithm may have
length n+1, the outer product algorithm may have length n2.
For the pooling and sorting algorithm, there is only one input,
both input and output have length n. In our experiments, n can
be 4, 5, · · · , 10, and for the four tasks, we randomly sample
35,000 input-output examples for each length of numbers and
split the examples to training set (20,000 cases), dev set (5,000
cases) and test set (10,000 cases).

B. Evaluation Metrics

To evaluate our model as a neural calculator, we leverage
the exact match [EM] as evaluation metric, which measures
the percentage of model outputs that match the ground truth
outputs exactly. Macro-averaged digital accuracy measures the
average overlap between the model output and ground truth
output. We treat the model output and the ground truth as
bags of tokens, and compute the accuracy of corresponding
positions, then average over all of the examples. Micro-
averaged digital accuracy treats all model outputs and all
ground truth outputs as a whole bag of tokens and compute
the accuracy of corresponding positions.

C. Model Ability

According to Table I, we compared the performance of our
model with some baseline models. We can see that MRCN
is the only model which can perfectly complete all of the
four tasks. Some ablation tests are also conducted. Without
the register structure, our model cannot perform well on add
and sort tasks. When we use only one memory, we found that
our model cannot complete all tasks except for addition. To
conduct time complexity estimation, we must first guarantee
that the model is able to achieve 100% EM. So according to
the above result, MRCN is the most appropriate model.

D. Addition

We choose long integer addition task to test our model
because addition is a fundamental task, and for n-digit addi-
tion, the time complexity is O(n). Addition task needs two
readable memories, each has a read head, and a writable
memory with a write head. Usually, we add numbers of the
same length, but 0s are allowed to appear at the start. For
example, 62345 + 82861 = 145206.

As is shown in Table II, we use three possible time complex-
ity equations to see if our model can predict the parameters
exactly. All of these parameter estimation results are recorded
when the model achieves an EM of 100% on the test set.
According to the polynomial equation results [na + b], when
we use single-length examples to train our model (add@4, · · · ,
add@10) and use single-length examples to test, our model
tends to predict the correct NTC for all of the experiments.
However, although NTC is correct, there are big differences



na + b nc(logn)d + b na + nc(logn)d + b
a b NTC c d b NTC a c d b NTC

add@4 1.142 0.311 5 1.436 -0.367 -1.259 5 1.018 0.206 -0.404 -0.073 5
add@5 0.933 1.391 6 0.897 0.704 0.452 6 -1.256 1.166 0.202 -0.866 6
add@6 1.042 0.763 7 0.891 0.450 0.647 7 0.926 0.501 -1.756 0.398 7
add@7 1.013 0.391 8 0.889 0.333 0.623 8 1.031 -0.043 -0.299 0.221 8
add@8 1.082 -0.401 9 0.030 2.827 0.974 9 -0.654 0.920 0.235 0.377 9
add@9 1.023 0.781 10 0.198 2.230 0.629 10 0.304 0.765 0.379 0.332 10

add@10 0.983 1.234 11 0.511 1.367 0.885 11 1.000 -0.036 0.674 -0.464 11
add@4,5 ⇒ 5 1.000 0.582 6 0.665 1.394 0.469 6 0.346 0.498 1.365 0.141 6

add@4,5,6 ⇒ 6 1.091 0.310 7 0.891 0.450 0.647 7 -1.251 1.190 -0.425 0.474 7
add@4-10 ⇒ 8 1.010 1.102 9 1.101 -0.241 0.976 9 -0.591 0.800 0.561 0.587 9

TABLE II
THE PARAMETER ESTIMATION OF THREE POSSIBLE TIME COMPLEXITY FORMULAS FOR INTEGER ADDITION TASK. NTC (NUMERICAL TIME

COMPLEXITY) REPRESENTS THE MINIMUM NUMBER OF ELEMENTARY OPERATIONS. ALL OF THESE PARAMETER ESTIMATION RESULTS ARE RECORDED
WHEN THE MODEL ACHIEVES AN EM OF 100% ON THE TEST SET.

between the predicted equations and the ground truth equation
C(n) = n + 1. When we use multiple-length examples to
train our model (add@4,5 ⇒ 5, add@4,5,6 ⇒ 6, add@4-10
⇒ 8), we found that the predicted equation is much closer
to the ground truth. Especially, we found that larger variety
of different lengths of training examples may lead to more
accurate estimation, for example, “add@4-10 ⇒ 8” estimates
the time complexity as n1.01 + 1.10, which is very close to
n+ 1.

We also use logarithm-like equation [nc(log n)d + b] for
evaluation. When using single-length training examples, the
model tends to tune parameters c, d, b to make NTC correct.
And multi-length training examples can contribute to finding a
“general law” of the algorithm’s time complexity. For example,
“add@4-10 ⇒ 8” tends to predict the exponential of n to be
close to 1 and the exponential of log n to be close to 0, which
fits for our expectation.

For testing our model on a more general perspective,
we combine the polynomial equation and the logarithm-like
equation together as na + nb(log n)c + d to see if our model
can find the correct law. The result in Table II turn out
to be unexpected but reasonable. We compare the predicted
equations by “add@4,5,6⇒ 6” and “add@4-10⇒ 8” with the
ground truth equation in Figure 6. Easy to show, the equation
trained by length 4, 5, 6 is very close to the line of ground
truth, especially when n is near 4, 5 and 6. On the other hand,
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(a) add@4,5,6 ⇒ 6 (b) add@4-10 ⇒ 8
Fig. 6. The comparison of time complexity equations: predicted vs. ground
truth.

the equation trained by 4−10 is nearly the same as the ground
truth when n ∈ [1, 10]. These experiment results illustrate that
our model can exactly predict the time complexity of long
integer addition task.

We also visualize the movement of the read heads and write
head in Figure 7. There are two examples of length 4 and
length 10. According to the figure, we found that the two read
heads read two operands from two readable memories and
write the computing result to the corresponding position in
the writable memory in the next elementary operation, which
is the same as the addition procedure.

E. 1-dim Max-pooling

The second task is 1-dim max-pooling, for length n input,
the complexity is O(n). In this task, we have one readable
memory and one writable memory. The difference between
max-pooling and the previous task is that max-pooling requires
multiple read heads in one readable memory. We set the
pooling window to 3, so there are three read heads in the
readable memory. An example of max-pooling is shown as
follows, if there is not enough element in the pooling window,
we would pad it with 0:

Input: 1 2 4 3 6 1 9 6

Output: 2 4 4 6 6 9 9 9

0

(a) add@4 (b) add@10
Fig. 7. Long integer addition task: The visualization of read heads’ and write
head’s movement. (a) is for length 4 and (b) is for length 10.



Fig. 8. 1-dim max-pooling task with window length 3: The movement of the
three read heads on the readable memory and the write head on the writable
memory. The length of the input is 8.

For simplicity, we only list the parameter estimation result
for polynomial time complexity equation in Table III. Since
the ground truth is C(n) = n, our model with multiple-length
training examples (“pool@4,5,6⇒ 6” and “pool@4-10⇒ 8”)
has made a very accurate estimation. The predicted NTC is
also exactly as the ground truth.

We also visualize the movement of the read heads and the
write heads in the max-pooling task. As shown in Figure 8, at
the beginning of the calculation process, the three read heads
are all at memory position 0. After a time step, the three
read heads automatically scattered to three adjacent positions
(which is exactly the way max-pooling does). And after
dealing with the three read contents with the calculator cell,
the write contents would be written into the middle position
of the three read heads’ position one-time step later, which is
also the same as the max-pooling task. This experiment shows
our model’s power in the max-pooling task.

F. Outer Product

Outer product is the tensor product of two coordinate
vectors. For two vectors u and v, their outer product u⊗ v is
a matrix w which satisfies wij = uivj . Its time complexity is
O(n) = n2. Similar to the addition task, outer product also has
two readable memory storing two input vectors respectively,
and a writable memory prepared for the result. Each readable
memory has a read head and the writable memory has a
write head. The time complexity equation learning result

na + b
a b NTC

pool@4 0.852 1.220 4
pool@5 0.982 0.254 5
pool@6 1.051 -0.418 6
pool@7 0.995 0.471 7
pool@8 0.963 0.581 8
pool@9 0.917 1.247 9
pool@10 1.046 -0.715 10

pool@4,5 ⇒ 5 1.075 -0.384 5
pool@4,5,6 ⇒ 6 0.983 0.026 6
pool@4-10 ⇒ 8 1.000 -0.107 8

TABLE III
THE PARAMETER ESTIMATION RESULT FOR 1-DIM MAX-POOLING TASK

WITH WINDOW SIZE 3. ALL RESULTS ARE RECORDED WHEN THE EM
ACHIEVES 100%.

Fig. 9. Outer product task: The visualization of the read heads’ and write
head’s movement. The length of input is 4 and the output is 16.

is shown in Table IV. We can see that the model trained
by multiple-length examples figures out the intrinsic law of
outer product. The time complexity estimated by “out@4,5,6”
(C(n) = n1.9998 + 0.1411) is very close to the ground truth.
In Figure 9, we visualize the movement of the read heads and
write head. Their movement also fits with our anticipation.
In particular, the first read head keeps in the same position
waiting for the second read head to iterate over the input
sequence, which means the controller can learn to manipulate
read heads to stop moving forward at a proper time.

G. Sorting

In the sorting task, we rearrange a given array to ascending
order. In our model, it needs two memories, one is readable
and the other is both readable and writable since sorting
needs to compare between input and output elements. The
averaged time complexity of sorting is Θ(n log n) (quick sort
(avg), heap sort and merge sort), the worst-case complexity is
O(n2) (bubble sort, insertion sort, quick sort (worst)).

For comparison, we also calculate the NTC of quicksort.
We take swap operation and compare operation as elementary
operations. Then we randomly sample more than 100,000
examples and use quick sort to rearrange the input sequence to
ascent order. We compute the average number of elementary
operations during quick sort process and list the result in the
last column of Table V.

In Table V, we use three different equations to fit the time
complexity of sorting. In the experiment result of equation
C(n) = na+b, we find there is a big difference among different
sets of parameters estimated by different model settings. For
example, a (the exponent of n) ranges from 1.49 ∼ 1.63.
Even in the experiments with multiple-length training input,
the difference between highest value and lowest value of a

na + b
a b NTC

out@4 2.0418 -0.5654 16
out@5 1.9591 1.4151 25
out@6 2.0069 -0.0274 36

out@4,5 ⇒ 5 1.9834 0.3274 25
out@4,5,6 ⇒ 6 1.9998 0.1411 36

TABLE IV
THE PARAMETER ESTIMATION FOR OUTER PRODUCT. ALL RESULTS ARE

RECORDED WHEN THE EM ACHIEVES 100%.



na + b nc(logn)d + b an2 + bn+ c Quick Bubble
a b NTC c d b NTC a b c NTC Sort Sort

sort@4 1.5330 0.0283 8 1.1790 1.1790 0.1713 8 0.6634 -0.3366 0.1634 9 9.533 6
sort@5 1.5120 -0.1030 11 1.0176 1.0176 0.0167 12 0.5489 -0.4512 -0.1489 15 13.454 10
sort@6 1.5784 -0.4175 16 1.0133 1.0133 0.3150 16 0.5473 -0.4827 -0.4728 16 17.728 15
sort@7 1.6012 0.1233 23 1.0373 1.0373 0.0359 22 0.5119 -0.4181 -0.0181 22 22.331 21
sort@8 1.5917 0.9523 28 1.0560 1.0561 -0.2125 28 0.5146 -0.4984 -0.9741 28 27.082 28
sort@9 1.5868 0.2334 33 1.0568 1.0568 0.0558 35 0.4382 -0.2618 -0.0618 33 32.301 36

sort@10 1.5816 -0.2336 38 1.0416 1.0416 -0.0473 38 0.4788 -0.6194 -0.0695 42 37.512 45
sort@4,5 ⇒ 5 1.4825 0.3599 11 0.9513 0.9513 -0.0499 10 0.4637 -0.4059 0.2092 10 13.454 10

sort@4,5,6 ⇒ 6 1.5358 0.6740 16 0.9964 0.9963 -0.0026 15 0.5033 -0.4904 0.0161 15 17.728 15
sort@4-10 ⇒ 8 1.6031 0.9631 29 1.0552 1.0552 0.6138 29 0.5230 -0.466 -0.7964 29 27.082 28

TABLE V
THE PARAMETER ESTIMATION RESULT OF THREE POSSIBLE TIME COMPLEXITY FOR SORT TASK. ALL OF THESE PARAMETER ESTIMATION RESULTS ARE

RECORDED WHEN THE EM ACHIEVES 100%.

is about 0.2, which is much larger than 0.09 in addition task
and pooling task. This phenomenon shows that equations with
the form na + b do not fit for the sorting task. According
to the parameter estimation result of logarithm-like equation
nc(log n)d + b in Table V, we find our model tends to keep
the exponent of n and log n to be very close. In addition,
when the length of the input sequence is short (shorter than
8), the NTC estimated by our model is less than the quicksort,
and when the length of the input sequence is longer than 8,
our NTC is larger than quicksort. This phenomenon shows
that although our model is faster than quicksort algorithm in
short-length sequence sorting, the complexity of the sorting
algorithm designed by our model is still a bit larger than
quicksort algorithm. When dealing with long sequences, our
model cannot beat quicksort. This experiment tells us that
the sorting algorithm found by our model is slower than
a n log n algorithm like quicksort. We also use quadratic
equation C(n) = an2 + bn + c to test our model, which is
in order to learn bubble sort (which has the complexity of
0.5n2 − 0.5n). According to the estimation result, we found
that when the length of test examples is short (shorter than
8), the parameters tend to be higher than bubble sort (0.5 and
−0.5). When the length of test examples are longer than 8,
the estimated parameters tend to be lower than bubble sort.
This phenomenon tells us that the sort algorithm our model
has learned is better than the bubble sort in long sequences.

V. CONCLUSION

In this paper, we propose a computation model which
mimics the procedure of CPU when solving arithmetic prob-
lems. We design a controller and a memory dispatcher as
our calculator cell. Then we propose a self-adaptive selection
gate to predict the numerical time complexity and estimate
the parameters of time complexity equations. We use four
arithmetic tasks to test our model: long integer addition, 1-
dim max-pooling, outer product and sorting. We estimate the
parameters of time complexity equations for the four tasks and
found that our model can precisely find the general laws of
these tasks and predict the correct equations. We also visualize
the movement of read heads and write heads of some tasks,
and they appear to move exactly as we have expected.
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