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Abstract— Deep neural networks are ubiquitous due to the 

ease of developing models and their influence on other domains. 
At the heart of this progress is convolutional neural networks 
(CNNs) that are capable of learning representations or features 
given a set of data. Making sense of such complex models (i.e., 
millions of parameters and hundreds of layers) remains 
challenging for developers as well as the end-users. This is 
partially due to the lack of tools or interfaces capable of providing 
interpretability and transparency. A growing body of literature, 
for example, class activation map (CAM), focuses on making sense 
of what a model learns from the data or why it behaves poorly in 
a given task. This paper builds on previous ideas to cope with the 
increasing demand for interpretable, robust, and transparent 
models. Our approach provides a simpler and intuitive (or 
familiar) way of generating CAM. The proposed Eigen-CAM 
computes and visualizes the principle components of the learned 
features/representations from the convolutional layers. Empirical 
studies were performed to compare the Eigen-CAM with the state-
of-the-art methods (such as Grad-CAM, Grad-CAM++, CNN-
fixations) by evaluating on benchmark datasets such as weakly-
supervised localization and localizing objects in the presence of 
adversarial noise. Eigen-CAM was found to be robust against 
classification errors made by fully connected layers in CNNs, does 
not rely on the backpropagation of gradients, class relevance 
score, maximum activation locations, or any other form of 
weighting features. In addition, it works with all CNN models 
without the need to modify layers or retrain models. Empirical 
results show up to 12% improvement over the best method among 
the methods compared on weakly supervised object localization. 

Keywords— Weakly supervised localization, Visual explanation 
of CNN, Explainable AI, Class activation maps, Salient features. 

I. INTRODUCTION   
The trade-off between generalization and interpretability [1], 

accuracy versus simplicity is a common theme of any machine 
learning algorithm. Usually, easy to interpret algorithms tend to 
generalize poorly on unseen data as in the case of   Decision trees 
[2] and K-means [3] algorithms, and hard to interpret algorithms 
usually generalize better as in the case of most deep learning 
(DL) models with millions of parameters [4], [5].  

Visual explanation of accurate and non-interpretable CNN-
based deep models can help the end-users in bridging the gap 
between model generalization and interpretability. It can 
identify sources of prediction failures that may help improved 
performances and building trust in complex DL models. 

The widely used convolutional neural network (CNN ) based 
architectures in DL are proven to be the best in learning 

representations and solving complex computer vision and 
general artificial intelligence problems such as image 
classification [4], [5], object localization [6]–[8], semantic 
segmentation [9]–[12], image captioning [13]–[16]and visual 
question answering (VQA) [17], [18]. CNN architecture is 
composed of a cascade of various types of layers, such as 
convolution, MaxPooling, drop-out, fully connected, and 
SoftMax. The nonlinearity allows a higher degree of freedom, 
drawing the decision boundaries to improve generalization and, 
at the same time, causes a lack of interpretability; in other words, 
no direct reversible input-output relationship. 

Visual explanations of CNN are expected to provide a high-
resolution class discriminative interpretation for various tasks. 
A plethora of methods, such as CAM [19], Grad-CAM [20], 
Grad-CAM++ [21], CNN-fixations [22] have reported results 
with varying degrees of success. The overall accuracies of these 
methods remain low in certain applications such as weakly 
supervised localization and fail to provide explanations for 
misclassified examples. In addition, methods like CNN fixations 
require many operations to memorize important activations in 
every layer.  

The proposed Eigen-CAM uses the principal components of 
the learned representations from the convolutional layers to 
create the visual explanations. The major contributions are: 

 We present a simple, intuitive method to obtain CAM 
based on convolutional layers output, and the process is 
independent of class relevance score. 

 We demonstrate that the proposed Eigen-CAM can 
robustly and reliably localize objects without the need 
to modify CNN architecture or even to backpropagate 
any computations, and at the same time, achieves higher 
performance compared to all previously reported 
methods such as Grad-CAM, CNN fixations. 

 Figure 1 shows examples depicting the ability of 
Eigen-CAM in generating visual explanations for multiple 
objects in an image. Eigen-CAM was found to be robust against 
classification errors made by fully connected layers in CNNs, 
does not rely on the backpropagation of gradients, class 
relevance score, maximum activation locations, or any other 
form of weighting features. 

 The rest of the paper is organized as follows. In Section II, 
we present related reported literature to provide the research 
context. Following this, we present the details of the proposed 
Eigen-CAM in section III. Subsequently, in Section IV, we 
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present the results of the empirical evaluation of Eigen-CAM 
and compare and contrast the performance against state-of-the-
art methods across different applications. Finally, Section V 
concludes the paper with a few remarks on lessons learned and 
future directions.  

II. RESEARCH CONTEXT  
CNN visualizations utilize a single forward pass to produce 

learned representation in an effort to interpret CNN models. 
Such methods can be divided into two groups, namely class non-
discriminative and class discriminative representations.  The 
former produce results capable of identifying salience features 
in the input space, while the latter method identifies parts of the 
salience features in the input space responsible for a particular 
response at the output of any DL model. The latter class of 
visualization explains the output decision by locating the region 
in the input space that causes this decision. 

Class non-discriminative CNN visualization backpropagate 
gradients from class score (input to SoftMax) to the input space 
(image pixels), to locate distinct features, for example, 
activation maximization [23] intended for answering the 
question of, what input may have maximized the output? Such 
methods could be used across the whole model or a single layer 
in the CNN network. The saliency maps [23] answers a very 

different question. Given a model and an input image, what part 
of the input image may have maximized the class score? 
DeconvNet [23], [24] and guided backpropagation [25]attempt 
to answer the same question addressed by saliency map, and 
differs from saliency map by the way they handle the 
nonlinearity resulting from MaxPooling. DeconvNet replaces 
the MaxPooling layer by using higher values for strides at the 
convolution layer to reduce the total number of features 
extracted across the CNN. At the same time, guided 
backpropagation, which outperforms all previous methods 
achieved that mainly by adding constraints on what gradients 
should be backpropagated. 

Class discriminative CNN visualization methods can be 
grouped into two broad categories based-relevance score and 
gradient propagation. The former propagates the probability of 
SoftMax layer all the way back to the input space to find the 
relevance of each input pixel, an excellent example of those 
methods are Deep LIFT [26] and Layer-Wise Relevance 
Propagation [27], while gradient-based methods backpropagate 
Gradients to last convolution layer to obtain class activation map 
(CAM),  

The method CAM was the first method to locate class 
activation map [19], by removing the fully connected layers at 
the end of any CNN model and replacing the MaxPooling layer 

 
(a) Original Image                                                    (b) Support for the cat category                                  (c)) Support for the bird category 

 
                      (d)   Original Image                                             (e)  Support for the dog category                                 (f) Support for the cat category 
 
Fig. 1: Eigen-CAM visualizations computed for two sample images. (a, d), Image. (b, c, e, f) shows class activations computed using Eigen-CAM, middle 
column represent support for different categories obtained using the fist principle component and right column  represent support for different categories 
obtained using the second principle component. 



by a global average pooling (GAP) layer and by calculating the 
weighted average of features extracted by the feature extraction 
network a class activation map is obtained. 

Even though CAM did not use gradient to weight features 
produced by the last convolutional layer to obtain the class 
activation map, it inspires methods like Grad-CAM and Grad-
CAM++, where Grad-CAM generalizes CAM to all different 
CNN models without the need to change or modify the CNN 
model and relies on gradients to weight features learned at the 
last convolutional layer. Grad-CAM++ enhances Grad-CAM 
visualization through pixel-wise weighting of the gradients to 
enhance multiple class occurrence and refine the process of 
generating feature maps.    

One of the recently reported methods called, CNN Fixations 
that did not fall under any previous categorizations, is inspired 
by the biological vision, like the way human eyes perform 
fixations. CNN Fixations track strong activation from the class 
space back to image space, providing a high resolution, pixel-
level localizations. This idea depends on the accuracy of the 
predicted class, as the class score increases, the fixation points 
tend to fall more inside the object triggering that class. 

To summarize, all class discriminative methods require 
propagating gradients in the case of Grad-CAM or Grad-
CAM++, score probability in the case of DeepLIFT, and Layer-
Wise Relevance Propagation or strong activation in the case, of 
CNN Fixations. Backpropagating any quantity requires addition 
computational overhead and assumes that classifiers produced 
correct decisions, and whenever a wrong decision is made, all 
mentioned methods will produce wrong or distorted 
visualization as can be seen in Figure 3.  

To address the above-mentioned problems, we present 
Eigen-CAM that is intuitive and compatible with all DL models 
without any modifications. 

III. PROPOSED APPROACH 
CNN-based deep neural networks outperform all other 

methods due to the ability to learn spatial relationships between 
image pixels. In general, CNN architecture can be divided into 
feature extraction network and classification network.  

The main component in the feature extraction network is 
convolutional layers, where the convolutional layers at the early 
stages learn lower level spatial features such as edges and 
corners. Along with the hierarchical structure, convolutional 
layers learn higher levels of abstractions and possibly features 
that can produce semantic meaning, at least to the categorical 
level. On the other hand, the classification network is the fully 
connected layers that flatten the learned features and draw 
decision boundary to classify the concepts. Let us start with the 
following observations to have an intuitive feel and the need of 
the Eigen-CAM: 

Observation 1: All methods that implement backpropagation 
of quantities such as gradients, relevance score, or maximum 
activation location, implicitly assume that the CNN model is 
100% accurate.  But these methods work only when the 
classification result is correct. It is possible that learned 
representation is correct, and the classification result is 

inaccurate due to limitations in learning the non-linear decision 
surface and vice-versa. 

Observation 2: CAM uses the last weight matrix between 
GAP and SoftMax to weight different feature maps. Similarly, 
in Grad-CAM and Grad-CAM++ derives the weights of the 
linear combination of different feature maps, based on 
backpropagated class relevance score. Radiant values determine 
the weight of each feature map to produce the class activation 
map.  

Observation 3: We know that gradients are noisy by nature. 
In addition, Grad-CAM and Grad-CAM++ use only positive 
gradients to weigh features and assign higher weights for larger 
gradients regardless of redundancy in the feature space or shape 
of the manifold in the feature space.  

 Observation 4: CNN maps images into different classes; the 
mapping matrix (Model) is expected to learn salient features. 
During the learning process, optimizers adjust the weights of 
filters in convolution layers to extract distinct features and adjust 
the weights of fully connected layers to classify extracted 
features. Complex hierarchical representation is mapped onto 
the last convolutional layer, and the decision boundary is learned 
using fully connected layers.   

 So, the question now is what features go through all local 
linear transformations and stay relevant in the same direction of 
maximum variation. In other words, what salience features will 
be in the direction of the principal component of the learned 
representation. 

 We assume that all relevant spatial features in the input 
image learned over the hierarchy of the CNN model will be 
preserved during the optimization process, and non-relevant 
features will be regularized or smoothed out. 

let I represent the input image of size (i × j) I Є Ri.j, and let 
WL=n represent the combined weight matrix of the first k layers 
of size (m, n). 

The class activated output is the image I projected onto the 
the last convolution layer L=k and is given by  
  

       O = W I                                    (1) 
 
Factorizing O  using singular value decomposition to 
compute the principal components of   O  gives 
                                            O = UΣVT                                   (2) 
 
Where U is an M × M  orthogonal matrix and the column of U  
are the left singular vectors,  Σ is a diagonal matrix of size M×N 
with singular values along the diagonal and  V is an N × N  
orthogonal matrix and the column of V are the left singular 
vectors.  
The class activation map, LEigen-CAM  is given by the projection 
of O  on the first eigenvector  
 

      LEigen-CAM= O V1
                                             (3)  



where V1 is the first eigen vector in the V matrix.   

IV. APPLICATIONS 
In this section, we will show that Eigen-CAM is a general 

visualization method capable of working with any framework or 
network without the need to modify, train, or backpropagate any 
parameter across layers. We evaluated Eigen-CAM against 
state-of-the-art reported methods that include multiple computer  
vision tasks and modalities across different applications. 

In Figure 2 we demonstrate the Eigen-CAM capability in 
detecting class activation maps (CAM), Figure 2 shows better 
capability of localizing discriminative regions compared to other 
methods and shows better localization consistency in different 
scenario’s like single and multiple object detection, detecting 
object in the foreground or the background of an image and 
finally detecting objects in images with crowded or plain 
background.  

In Figure 3 we presented two misclassified examples from 

 
                        (a) Original Image                                   (b) Grad-CAM                                      (c) CNN-fixation                                (d) Eigen-CAM 

 
    (e) Original Image                                    (f) Grad-CAM                                      (g) CNN-fixation                                 (h) Eigen-CAM 

 
                        (i) Original Image                                  (j)  Grad-CAM                                      (k) CNN-fixation                                 (l) Eigen-CAM 

 

                        (m) Original Image                                  (n)  Grad-CAM                                    (o) CNN-fixation                                 (p) Eigen-CAM 

Fig. 2: CNN visualizations computed for a four sample images from ILSVRC validation set (a, e, I, m). Second column form the left images (b, f, j, n) show 
class activations computed using Grad-CAM. second column from the right images (c, g, k, o) represent activations produced using CNN Fixation. First column 
from the right images (d, h, l, p) show class activations computed using Eigen-CAM, all examples were classified correctly using VGG-16 and the green box 
represents the example label.  



 ILSVRC validation set, top-3 classification results for the 
image in figure 3.a using VGG-16 were (Dogsled with 
probability 0.543, Collie with probability 0.133 and 
Groenendael with probability 0.088), figure 3.d shows that 
Eigen-CAM successfully localizes features for a Collie, unlike 
other methods. 

 In the second example, top-3 classification results for the 
image in figure 3.e were ( Stole with probability 0.153, Kimono 
with probability 0.063 and Windsor tie with probability 0.055), 
and Eigen-CAM localizes features for Windsor tie as can be 
seen in figure 3.h. 

In compliance with existing methods, we will demonstrate 
the effectiveness of localizing objects using Eigen-CAM across: 

A. Weakly-supervised localization 
 In this section, we evaluated Eigen-CAM localization 

capability on the ILSVRC 2014 benchmark dataset (ImageNet) 
[28] in the context of image classification. 

In weakly-supervised localization methods, CNNs utilize 
different techniques for object detection without training on 
bounding boxes, similar to other methods Eigen-CAM can 
localize objects, but rather than relying on classification labels 
to generate bounding boxes as in case of most methods, Eigen-
CAM analyzed the output of the last convolutional layer to 
generate bounding boxes for the task of object localization. 

For localization task, given an image and a model, in a 
forward pass, a class activation map is obtained from the first 
principle component of the combined weight matrix of the last 
convolution layer, scaled to (0 - 255) range, reshaped to a square 
size, And binarized based on different thresholds of (5-15)% of 
maximum level (255), different thresholds are caused by using 
different models, binarizing allow and facilitate producing a 
bounding box for the largest segment. 

For the evaluation process, we used off-the-shelf pre-trained 
VGG-16 [29], AlexNe t[5], ResNet-101 [4], Inception-V1, aka 
GooleNet [25], and DenseNet-121 [19], all model are pre-
trained on ILSVRC dataset, we evaluated these models on 
ILSVRC validation set of which include 50,000 images. We 
compare results obtained using the Eigen-CAM with all 
methods, as shown in Table 1. For all methods (except Grad-
CAM), we used numbers reported in [22]. 

 The results presented in Table 1 represent the error rate of 
Intersection over Union (IOU) metric (1 - Accuracy) for the top-
1 recognition prediction, for all previous methods the 
computation of IOU metric was for the correct predictions only, 
unlike our method which is class independent and allows the 
computation of IOU for the entire validation set of ILSVRC 
dataset. 

In the task of weakly-supervised localization, we achieved a 
12% percent improvement using the AlexNet model, 7.5% 
percent improvement using the VGG-16 model, 11% percent 
improvement using GooLeNet model and 2.7 % percent 
improvement using DenseNet model. 

B. Adversarial Examples  
 In this section, we will try to answer the question of which 
part of the CNN is mainly affected by adversarial examples. 
Adversarial examples can easily fool different classifiers while 
being imperceptible to humans, and adversaries deploy such 
vulnerability to impair different safety-critical environments 
that utilize CNNs. 

 To answer the question we started with, we have perturbed 
some examples from the ILSVRC dataset using the DeepFool 
method [30] for the VGG-16 Model, Figure 6. shows two 
Examples classified using the VGG-16 Model and perpetuated 
using the DeepFool method. 

 
     (a) Original Image                                        (b) Grad-CAM                                (c) CNN-fixation                                    (d) Eigen-CAM 

 
      (e) Original Image                                    (f)  Grad-CAM                                       (g) CNN-fixation                               (h) Eigen-CAM 

Fig. 3: CNN visualizations computed for a two misclassified example images from ILSVRC validation set (a, e) Original image. Second column form the left 
images (b, f) show class activations computed using Grad-CAM. second column from the right images (c, g) represent activations produced using CNN Fixation. 
First column from the right images (d, h) show class activations computed using Eigen-CAM, green box represents top 1 classification results using VGG-16  



    

TABLE I 
TOP-1 RECOGNITION PREDICTION ERROR RATES FOR THE WEAKLY SUPERVISED LOCALIZATION TASK OF DIFFERENT 

VISUALIZATION APPROACHES ON ILSVRC VALIDATION SET. BOLD FACE NUMBERS REPRESENT BEST RESULTS AMONG DIFFERENT 
MODELS 

Method AlexNet VGG-16 DenseNet-121 GoogLeNet ResNet-101 
cMWP 72.31    64.18       64.97 69.25        65.94 

Backprob 65.17 61.12 67.49 61.31 57.97 
CAM 67.19 57.20 55.37 60.09 48.34 

Grad-CAM 71.16 56.51 75.29 74.26 64.84 
CNN Fixations 65.70 55.22 56.72 57.53 54.31 

Eigen-CAM 53.02 47.67 55.07 46.28 55.26 

 
                (a) Original Image                                  (b) Grad-CAM                                       (c) CNN-fixation                              (d) Eigen-CAM 

 
 (e) Perpetuated Image of a                           (f) Grad-CAM                                     (g) CNN-fixation                                (h) Eigen-CAM 

 
                           (i) Original Image                                   (j)  Grad-CAM                                       (k) CNN-fixation                              (l) Eigen-CAM 

 

                    (m) Perpetuated Image of i                           (n)  Grad-CAM                                      (o) CNN-fixation                             (p) Eigen-CAM 

Fig. 4: CNN visualizations computed for two sample images from ILSVRC validation set (a, i) Original image. Image e and m are a perpetuated image of a and 
i Second column form the left images (b, f, j, n) shows class activations computed using Grad-CAM. second column from the right images (c, g, k, o) represent 
activations produced using CNN Fixation. First column from the right images (d, h, l, p) shows class activations computed using Eigen-CAM. green box 
represents the example label and red box represents the adversarial example classification result. 



 A closer examination of explanations produced on original 
and perpetuated images show that both the Grad-CAM (Figure 
4.b vs. 4.f; 4.j vs. 4.n) and CNN fixation (Figure 4.c vs. 4.g; 4.k 
vs. 4.o) produce different activation maps. However, the Eigen-
CAM produced almost identical visual explanation (see figure 
4.d vs.4.h; 4.i vs. 4.p) and also correctly localize objects in the 
presence of adversarial noise. Since Eigen-CAM relies on the 
feature extraction network only and not on the classification 
network, we could infer that adversarial noise has more effect 
on classification network (dense layers), and that also explains 
the change in explanations for other methods. 

V. CONCLUSIONS 
Deep CNN-based models are highly accurate yet difficult to 

explain. As a research community, we need easy to use (without 
any modifications of the model) method to gain perspective 
about the learned representations and their validations. We have 
presented the Eigen-CAM that provides visual explanation 
irrespective of the accuracy of the model or the presence of 
adversarial noise. We provide empirical evidence showing that 
Eigen-CAM is robust and reliable in producing consistent 
visual explanations and outperforms state-of-the-art methods. 
The easy to use and intuitive Eigen-CAM only needs the 
learned representations at the final convolution layer, making it 
independent of classification layers. Eigen-CAM can be used 
with any CNN-based DL models without any modification. 
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