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Abstract—Graph-based semi-supervised learning (SSL)
methods are effective on many application domains. Despite
such an effectiveness, many of these methods are transductive
in nature, being uncapable to provide generalization for the
entire sample space. In this paper, we generalize three existing
graph-based transductive methods through kernel expansions
on reproducing kernel Hilbert spaces. In addition, our methods
can easily generate an inductive model in a parameter-free way,
given a graph Laplacian constructed from both labeled and
unlabeled examples and a label matrix. Through experiments
on benchmark data sets, we show that the proposed methods
are effective on inductive SSL tasks in comparison to manifold
regularization methods.

I. INTRODUCTION

Semi-supervised learning (SSL) aims to use the abun-
dance of unlabeled examples to improve the classification
performance in comparison to purely supervised learning
methods. In scenarios in which we deal with only a few la-
beled examples, SSL methods can be an effective alternative.
Among these methods, the graph-based ones are widely used
due to their effectiveness on benchmark data sets [1]–[5] and
great theoretical properties [6]–[9]. However, many of these
methods were specifically designed for transductive learning
tasks [10], being uncapable to provide generalization for the
entire sample space.

Since many real applications need a model generated
from training sample, it is crucial to provide novel inductive
methods for graph-based SSL. In [11], the authors proposed
an effective function induction for graph-based SSL and
provided a linear time algorithm that is trained using a
small subset of the examples. In [12], the authors proposed
a technique for extending empirical functions based on the
Nyström method [13], requiring the construction of a family
of functions called geometric harmonics.

Unfortunately, the task of inductive graph-based SSL
from transductive methods has taken little attention [14],
[15]. In this paper, we generalize the Gaussian Fields and
Harmonic Functions (GFHF) [16], Robust Multi-class Graph
Transduction (RMGT) [17], and RMGT with Higher Order
Regularization (RMGTHOR) [18] algorithms for inductive
SSL tasks. We also generalize the method in [14] for com-
binatorial and normalized Laplacians.

A. Motivation

The motivations of this paper are summarized as follows:

• the method in [14] was designed for the combinato-
rial Laplacian. Since normalized Laplacians can give
better results than combinatorial Laplacians [19], we
can achieve better results by generalizing the method
in [14] for normalized Laplacians;

• since graph-based SSL may be strongly dependent
of parameter selection [20], there is a need of novel
methods with fewer parameters, ideally none. The
proposed methods in this paper are parameter-free,
given a graph Laplacian generated from both labeled
and unlabeled examples;

• despite the effectiveness of RMGTHOR, RMGT, and
GFHF [20], [18], [21], these methods are naturally
transductive. By generalizing these methods through
kernel expansions, we can maintain their effective-
ness on the unlabeled examples and also provide
generalization for the whole input space;

B. Contributions

The contributions of this paper are summarized as fol-
lows:

• we generalize the method in [14] for combinatorial
and normalized Laplacians. Specifically, we gener-
ate a method based on GFHF and approximate its
closed-form solution for inductive tasks;

• we generalize GFHF through kernel expansions on
reproducing kernel Hilbert spaces (RKHS), as in
[22]. The generalized method yields the same output
of GFHF for transductive learning tasks, indepen-
dently of the kernel function used. We call the
generalized method Kernelized GFHF (K-GFHF);

• we generalize RMGT and RMGTHOR using the
same kernel expansions in [22]. The generalized
method yields the same output of RMGTHOR and
RMGT for transductive learning tasks, indepen-
dently of the kernel function used. We call the
generalized method Kernelized Constrained GFHF
(K-CGFHF);

• we provide novel SSL methods with a few parame-
ters. Given a graph Laplacian and a label matrix,
K-GFHF and K-CGFHF generate a classification
function in a parameter-free way for transductive
learning tasks;
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• we show that K-GFHF and K-CGFHF are effective
on inductive SSL tasks using benchmarck data sets,
achieving better results than the manifold regulari-
zation methods in [22].

C. Outline

The remainder of this paper is organized as follows.
Section II provides a background on SSL. Section III pro-
vides heuristic methods for GFHF. Section IV describes the
proposed methods. Section V shows our results on inductive
SSL tasks. Finally, Section VI concludes the paper.

II. BACKGROUND

This section revises GFHF, RMGT, and RMGTHOR. We
also revise the process of kernel expansions on RKHS, as
described in [22].

A. Notation

Consider a training sample X := {xi}ni=1 ⊂ Rd, in which
the first l examples are labeled with one of c classes while
the remainder u := n − l examples (l + 1 ≤ i ≤ n) are
unlabeled. Let Na := {i ∈ N∗|1 ≤ i ≤ a}, ∀a ∈ N∗, and
B := {0, 1}. Assume that xi, i ∈ Nl, has label yi ∈ Nc. Let
Ni ⊂ X be the set of neighbors of xi. Let YL ∈ Bl×c be a
label matrix in which (YL)ij = 1 if and only if xi has label
yi = j. Since we focus on multi-class problems, YL1c = 1l

such that 1c is a c-dimensional 1-entry vector.

Let Ai,· ∈ R1×b and A·,j ∈ Ra be the i-th row and j-th
column vectors of a matrix A ∈ Ra×b, ∀a, b ∈ N∗. We write
A < 0 to indicate that A is positive semidefinite1 (PSD).
The transpose of A is denoted by A>. Consider Oa×b the
a-by-b null matrix and Ia the a-by-a identity matrix.

Let W ∈ Rn×n be a weighted matrix generated from X .
Assume that F and Y are subdivided into two submatrices
while all other matrices are subdivided into four submatrices.
For instance:

W :=

[
WLL WLU
WUL WUU

]
F :=

[
FL
FU

]

where WLL ∈ Rl×l and FL ∈ Rl×c are the submatrices of
W and F, respectively, on labeled examples, WUU ∈ Ru×u

and FU ∈ Ru×c are the submatrices of W and F, respecti-
vely, on unlabeled examples, and so on.

Let L ∈ Rn×n be a graph Laplacian generated from W.
The combinatorial Laplacian LC is defined by LC := D−W
where2 D := diag(W1n). The normalized Laplacian LN is
defined by LN := In −D−1/2WD−1/2 where In is the n-
by-n identity matrix. By construction, we have LC < 0 and
LN < 0.

1A matrix A ∈ Ra×a is PSD if it is symmetric with nonnegative
eigenvalues. If A is PSD, we have v>Av ≥ 0, ∀v ∈ Ra.

2Given a vector v ∈ Ra, the operation diag(v) outputs an a × a matrix
A such that Aii = vi, ∀i ∈ Na.

B. GFHF

GFHF3 [16] can be formulated as the following optimiza-
tion problem:

min
F∈Rn×c

tr
(
F>LF

)
s.t. FL = YL (1)

where tr(A) :=
∑a

i=1 Aii is the trace of a matrix A ∈ Ra×a.
Since L < 0, we obtain the following closed-form solution:

F =

[
YL

−L−1UULULYL

]
(2)

As proved in [14], when L = LC, F is always row-
normalized, i.e., F1c = 1n. Due to the harmonic property
[16], F ≥ 0. Therefore, Fij acts like a posterior probability
of xi being of class j when L = LC.

The minimization problem in (1) can be iteratively solved
for L = LC. Let P := D−1W ∈ Rn×n be the probability
transition matrix. Given an initial matrix F

(0)
U ∈ Ru×c, we

iterate:

F
(t+1)
U = PUUF

(t)
U + PULYL (3)

This converges to:

F∗U = (Iu −PUU )
−1

PULYL = −(LC)
−1
UU (LC)ULYL

C. RMGT and RMGTHOR

RMGT [17] can be viewed as the following constrained
optimization problem:

min
F∈Rn×c

tr
(
F>LCF

)
s.t. FL = YL, F1c = 1n, F>1n = nω

(4)

The closed-form solution of (4) is given by:

F =

 YL

−(LC)
−1
UU (LC)ULYL +

(LC)
−1
UU1u

1>u (LC)
−1
UU1u

τ

 (5)

in which

τ = nω> − 1>l YL + 1>u (LC)
−1
UU (LC)ULYL

RMGT was specifically designed for the combinatorial
Laplacian LC, which may not provide effective classification
performances in real applications [19]. Such an issue was
solved in [18], generating a method called RMGTHOR.
Specifically, RMGTHOR [18] is a generalization of RMGT
for any graph Laplacian. Solving (4) for a general Laplacian
L yields the following closed-form solution:

3See [14], [15] for a review.



F =

[
YL

−L−1UULULYL +
L−1
UU1u

1>u L−1
UU1u

τ + 1
cν1>c

]
(6)

in which

τ = nω> − 1>l YL + 1>u L−1UULULYL

ν = 1u + L−1UULUL1l −
L−1UU1u

1>u L−1UU1u

(
u+ 1>u L−1UULUL1l

)
D. Kernel expansions on RKHS

Given a binary classification problem (yi ∈ {−1,+1},
∀i ∈ Nl), the manifold regularization framework [22] can be
viewed as the following optimization problem:

min
f∈HK

1

l

l∑
i=1

V(xi, yi, f) + γA‖f‖HK + γI f>Lf (7)

where K(·, ·) is a kernel function and K ∈ Rn×n is a kernel
matrix in which Kij := K(xi, xj), ∀i, j ∈ Nn. HK is the
Reproducing Kernel Hilbert Space (RKHS) for the kernel
K, f := [f(x1), · · · , f(xn)]> ∈ Rn, V(xi, yi, f) is a cost
function, ‖·‖HK is the norm in HK, and γA and γI are the
ambient and intrinsic regularization parameters, respectively.

Due to the Representer Theorem in [22], the solution of
(7) can be written as f(x) =

∑n
i=1K(x, xi)αi with α ∈ Rn.

Therefore, we can classify the examples in the input space
through kernel expansions over both labeled and unlabeled
examples.

III. HEURISTIC INDUCTION FOR GFHF

This section generalizes the approach in [14], including
special cases for L = LC and L = LN.

A. Notation

We used the same notation in [14]. After training stage,
we consider that the examples in X are labeled, i.e., each
xi ∈ X has a corresponding “label vector”4 Fi,· ∈ Rc,
which comes from the transductive solution F. Let x̃ ∈ Rd

be a test example and X̃ := X ∪ {x̃} ⊂ Rd be a sample
in the input space. The main idea of the heuristic induction
process is to run a transductive method from X̃ and provide
an approximated solution for x̃ as fast as possible.

Let W̃ ∈ R(n+1)×(n+1) be the weighted matrix associ-
ated to X̃ . Since self-loops are not permitted, W̃UU = 0.
Considering Ñ ⊂ X the set of neighbors of x̃, we have(
W̃>
UL

)
i
= K(x̃, xi) if xi ∈ Ñ and 0 otherwise. In order

to decrease the computation time required for induction, we
consider that Assumption 1 holds5. Mathematically, such an
assumption states that W̃LL = W.

4Now we have soft (real-valued) labels, instead of binary ones.
5If Assumption 1 does not hold, we have to reconstruct W for each test

example x̃. This is uneffective even for a small training sample.

Assumption 1 (Graph connectivity for induction [15]):
The graph connectivity on the training examples does not
change during the induction process. Intuitively, we assume
that W is constant.

Let Ñ ∈ Bn be a neighborhood vector in which Ñi = 1 if
and only if xi ∈ Ñ , Ψ : Rd×Rd 7→ R+ a distance function,
and Ψ̃ ∈ Rn a distance vector in which Ψ̃i := Ψ(x̃, xi),
∀i ∈ Nn. Consider F̃ ∈ R(n+1)×c the output matrix of an
SSL method for X̃ and ỸL := F ∈ Rn×c the corresponding
label matrix.

B. Inductive method

We call the generalized heuristic method Heuristic GFHF
(H-GFHF). For induction, the optimization problem in (1)
becomes:

min
F̃∈R(n+1)×c

tr
(
F̃>L̃F̃

)
s.t. F̃L = F (8)

This yields the following closed-form solution:

F̃ =

[
F

−L̃−1UU L̃ULF

]
(9)

Therefore, we classify x̃ as:

y (x̃) = argmax
i∈Nc

(
F̃U

)
i
= argmax

i∈Nc

(
−L̃−1UU L̃ULF

)
i

(10)

Eq. (10) provides an inductive method for GFHF for a
given graph Laplacian L. In Propositions 1 and 2, we provide
special cases of (10) for L = LC and L = LN, respectively.

Proposition 1 ([14]): If L = LC, (10) yields:

y (x̃) = argmax
i∈Nc

∑
xj∈Ñ

K (x̃, xj)Fji (11)

Proof: By construction and Assumption 1, we have:(
L̃C

)
UU

=
∑

xk∈Ñ

K(x̃, xk)((
L̃C

)
UL

)
j
= −K(x̃, xj)Ñj

Therefore, (10) yields:

y (x̃) = argmax
i∈Nc

(
−
(
L̃C

)−1
UU

(
L̃C

)
UL

F

)
i

= argmax
i∈Nc

∑
xj∈Ñ K (x̃, xj)Fji∑

xk∈Ñ K (x̃, xk)

= argmax
i∈Nc

∑
xj∈Ñ

K (x̃, xj)Fji



Proposition 2: If L = LN, (10) yields:

y (x̃) = argmax
i∈Nc

∑
xj∈Ñ

K (x̃, xj)Fji√
Djj +K(x̃, xj)

(12)

Proof: By construction,
(
L̃N

)
UU

= 1. From Assump-
tion 1, we have:

((
L̃N

)
UL

)
j
= −

(
W̃UL

)
j√

D̃UU

√(
D̃LL

)
jj

= − K(x̃, xj)Ñj√∑
xk∈Ñ K(x̃, xk)

√
Djj +K(x̃, xj)Ñj

(13)

Therefore, (10) yields:

y (x̃) = argmax
i∈Nc

(
−
(
L̃N

)−1
UU

(
L̃N

)
UL

F

)
i

= argmax
i∈Nc

−
∑

xj∈Ñ

((
L̃N

)
UL

)
j
Fji

= argmax
i∈Nc

∑
xj∈Ñ

K (x̃, xj)Fji√
Djj +K(x̃, xj)

(14)

Proposition 1 shows that (10) is equivalent to the Nada-
raya-Watson kernel regression6 [23] for multi-class problems
when L = LC. Proposition 2 provides a similar classification
function than in Proposition 1, incorporating the additional
normalization factor

√
Djj +K(x̃, xj). Therefore, we clas-

sify x̃ as:

y (x̃) = argmax
i∈Nc

∑
xj∈Ñ

ΓL (x̃, xj)Fji

such that

ΓL (x̃, xj) =

{
K(x̃, xj), L = LC

K(x̃, xj) (Djj +K(x̃, xj))
−1/2

, L = LN

IV. PROPOSED KERNELIZED METHODS

This section formulates the K-GFHF and K-CGFHF
methods. Assume that

(
A−1

)
•◦ is the submatrix •◦ of A−1

while A−1•• is the inverse of A••, such that • and ◦ can
be even L or U . We start our theoretical analysis with

6Given a kernel function Kh(·) with bandwidth h > 0, a
sample {xi}ni=1 ⊂ Rd, and target values {yi}ni=1 ⊂ R, the
Nadaraya-Watson kernel regression provides an estimator m̂h(x) =[∑n

i=1 Kh(x− xi)yi
]
/
∑n

i=1 Kh(x− xi).

Proposition 3, which is a well known block matrix inversion
property.

Proposition 3: If K is symmetric and invertible, we have:

(
K−1

)
LL =

(
KLL −K>ULK−1UUKUL

)−1(
K−1

)
LU = −

(
KLL −K>ULK−1UUKUL

)−1
K>ULK−1UU(

K−1
)
UL = −

(
KUU −KULK−1LLK>UL

)−1
KULK−1LL(

K−1
)
UU =

(
KUU −KULK−1LLK>UL

)−1
(15)

Proof: Since K = K> and KK−1 = In, we have:

[
KLL K>UL
KUL KUU

] [ (
K−1

)
LL

(
K−1

)
LU(

K−1
)
UL

(
K−1

)
UU

]
=

[
Il Ol×u

Ou×l Iu

]
With simple algebra, we get (15).

From the kernel expansions in [22], we have F = Kα

with α :=

[
αL
αU

]
∈ Rn×c. By definition, αL ∈ Rl and

αU ∈ Ru. Assuming that FL = YL, we have:

[
FL
FU

]
=

[
KLL K>UL
KUL KUU

] [
αL
αU

]
=

[
KLLαL + K>ULαU
KULαL + KUUαU

]
=

[
YL
FU

] (16)

Therefore,

αL = K−1LL
(
YL −K>ULαU

)
(17)

From (16) and (17), we obtain:

FU = KULαL + KUUαU

= KULK−1LLYL +
(
K−1

)−1
UU αU

(18)

A. K-GFHF

The optimization problem in (1) can be rewritten as7:

min
FU∈Ru×c

tr
(
F>ULUUFU

)
+ 2tr

(
F>ULULYL

)
(19)

From (18), we have:

tr
(
F>ULULYL

)
= tr

(
α>U

(
K−1

)−1
UU LULYL

)
+ tr

(
Y>LK−1LLK>ULLULYL

)
7See [14] for details.



and

tr
(
F>ULUUFU

)
= tr

(
Y>LK−1LLK>ULLUUKULK−1LLYL

)
+ tr

(
α>U

(
K−1

)−1
UU LUU

(
K−1

)−1
UU αU

)
+ 2tr

(
α>U

(
K−1

)−1
UU LUUKULK−1LLYL

)
Therefore, the optimization problem in (19) becomes:

min
αU∈Ru×c

Γ(αU ) (20)

such that

Γ(αU ) = tr
(
α>U

(
K−1

)−1
UU LUU

(
K−1

)−1
UU αU

)
+ 2tr

(
α>U

(
K−1

)−1
UU LULYL

)
+ 2tr

(
α>U

(
K−1

)−1
UU LUUKULK−1LLYL

)
The closed-form solution of (20) is given by:

αU = −
(
K−1

)
UU

(
KULK−1LL + L−1UULUL

)
YL

=
(
K−1

)
ULYL −

(
K−1

)
UU L−1UULULYL

(21)

Substituting (21) in (17), we obtain:

αL = K−1LLYL −K−1LLK>UL
(
K−1

)
ULYL

+ K−1LLK>UL
(
K−1

)
UU L−1UULULYL

=
[
K−1LL + K−1LLK>ULK−1UUKUL

(
K−1

)
LL

]
YL

−
(
K−1

)
LU L−1UULULYL

(22)

From the first equation in (15), we have:

K>ULK−1UUKUL = KLL −
(
K−1

)−1
LL

Therefore, (22) yields:

αL =
(
K−1

)
LLYL −

(
K−1

)
LU L−1UULULYL (23)

From (21) and (23), we have:

α =

[ (
K−1

)
LLYL −

(
K−1

)
LU L−1UULULYL(

K−1
)
ULYL −

(
K−1

)
UU L−1UULULYL

]
=

[ (
K−1

)
LL

(
K−1

)
LU(

K−1
)
UL

(
K−1

)
UU

] [
YL

−L−1UULULYL

]
= K−1

[
YL

−L−1UULULYL

] (24)

Eq. (24) shows that K-GFHF and GFHF have the same
transductive solution, independently of K. However, K-
GFHF has the advantage of being an inductive method.

B. K-CGFHF

K-CGFHF has the same objective function in (20), incor-
porating the normalization constraints in [17]. The normali-
zation constraints F1c = 1n and F>1n = nω, subject to
FL = YL, are equivalent to:

FU1c = 1u, F>U 1u = nω −Y>L1l (25)

From (18) and (25), we get the following constraints:

αU1c =
(
K−1

)
UU

(
1u −KULK−1LL1l

)
α>U

(
K−1

)−1
UU 1u = nω −Y>L1l −Y>LK−1LLK>UL1u

(26)

From (20) and (26), we can formulate K-CGFHF as the
following constrained optimization problem:

min
αU∈Ru×c

Γ(αU )

s.t.

{
αU1c =

(
K−1

)
UU

(
1u −KULK−1LL1l

)
α>U

(
K−1

)−1
UU 1u = nω −Y>L1l −Y>LK−1LLK>UL1u

(27)

Proposition 4 provides the closed-form solution of (27)
while Corollary 1 proves that K-CGFHF generalizes RMGT
and RMGTHOR.

Proposition 4: The closed-form solution of (27) is given
by:

αU =
(
K−1

)
ULYL

+
(
K−1

)
UU

[
−L−1UULULYL +

L−1UU1u

1>u L−1UU1u

τ +
1

c
ν1>c

]
(28)

where:

τ = nω> − 1>l YL + 1>u L−1UULULYL

ν = 1u + L−1UULUL1l −
L−1UU1u

1>u L−1UU1u

(
u+ 1>u L−1UULUL1l

)
Proof: The Lagrangian corresponding to (27) is given

by:

L(αU , ξ,λ) = Γ(αU )

− ξ>
(
αU1c −

(
K−1

)
UU

(
1u −KULK−1LL1l

))
− λ>

(
α>U

(
K−1

)−1
UU 1u − nω + Y>L1l

+ Y>LK−1LLK>UL1u

)
where ξ ∈ Ru and λ ∈ Rc are the Lagrange multipliers.
Zeroing ∂L/∂αU , we obtain:



αU =
(
K−1

)
UU L−1UU

[
−
(
LUUKULK−1LL + LUL

)
YL

+
1

2

(
K−1

)
UU ξ1

>
c +

1

2
1uλ

>
]

(29)

Substituting (29) in the first constraint, we obtain:

c

2
L−1UU

(
K−1

)
UU ξ = 1u + L−1UULUL1l

− 1

2
L−1UU1uλ

>1c

(30)

Substituting (29) in the second constraint, we obtain:

λ> =
2

1>u L−1UU1u

[
nω> − 1>l YL + 1>UL−1UULULYL

− 1

2
1>u L−1UU

(
K−1

)
UU ξ1c

] (31)

Substituting (31) in (30), we obtain:

ξ =
2

c
$−1

(
K−1

)
UU

[
1u + L−1UULUL1l

−
L−1UU1u

1>u L−1UU1u

(
u+ 1>u L−1UULUL1l

)] (32)

in which

$ =
(
K−1

)
UU L−1UU

(
K−1

)
UU

−
(
K−1

)
UU L−1UU1u1>u L−1UU

(
K−1

)
UU

1>u L−1UU1u

Substituting (31) in (29), we obtain:

αU = −
(
K−1

)
ULYL −

(
K−1

)
UU L−1UULULYL

+
1

2
$ξ1>c +

(
K−1

)
UU L−1UU1u

1>u L−1UU1u

×

×
(
nω> − 1>l YL + 1>u L−1UULULYL

) (33)

Substituting (32) in (33), we get (28).

Corollary 1: From (28) and (17), we have:

α = K−1

 YL

−L−1UULULYL +
L−1UU1u

1>u L−1UU1u

τ +
1

c
ν1>c


(34)

in which

τ = nω> − 1>l YL + 1>u L−1UULULYL

ν = 1u + L−1UULUL1l −
L−1UU1u

1>u L−1UU1u

(
u+ 1>u L−1UULUL1l

)

Moreover, if L = LC, (34) yields:

α = K−1

 YL

−(LC)
−1
UU (LC)ULYL +

(LC)
−1
UU1u

1>u (LC)
−1
UU1u

τ


(35)

in which

τ = nω> − 1>l YL + 1>u (LC)
−1
UU (LC)ULYL

Proof: (34) comes directly from (28) and (17). From
(34) and Corollary 1 in [18], we get (35).

V. EXPERIMENTAL EVALUATION

We performed an experimental evaluation to verify the
effectiveness of K-GFHF and K-CGFHF on inductive SSL
tasks on benchmark data sets. We compared our methods
against LapRLS, LapSVM, and H-GFHF (using both LC
and LN). We used a variation of the code in [20]8 for
these methods. Table I describes the data sets used in our
experiments, which are freely available9 and widely used in
the SSL literature [4].

TABLE I. DESCRIPTION OF THE DATA SETS.

Data sets n d c % minority class % majority class
COIL2 1500 241 2 50.0 50.0

DIGIT-1 1500 241 2 48.93 51.07
G-241C 1500 241 2 50.0 50.0
G-241N 1500 241 2 49.87 50.13
USPS 1500 241 2 20.0 80.0

A. Setup

From the training sample X , we generated a distance
matrix Ψ ∈ Rn×n using the l2-norm (or Euclidean distance)
as distance function for all data sets. From Ψ, we generated
an adjacency matrix A ∈ Bn×n using the symmetric k-
nearest neighbors (symKNN) graph, which is widely used
for graph construction [20]. In the symKNN graph, there
exists an undirected edge between xi and xj if xj is one of
the k closest examples of xi or vice versa. We set k = 10.

From A and Ψ, we generated a weighted matrix W using
the radial basis function (RBF) kernel, which is defined by:

K (xi, xj) = exp

(
−Ψ

2 (xi, xj)

2σ2

)
(36)

where σ ∈ R∗+ is the kernel bandwidth parameter. Consi-
dering x(k)

i ∈ X the k-th nearest neighbor of xi in X , we
estimated the value of σ by:

σ =
1

3n

n∑
i=1

Ψ
(

xi, x
(k)
i

)
(37)

8http://sites.labic.icmc.usp.br/sousa/experiments graph SSL/.
9http://olivier.chapelle.cc/ssl-book/benchmarks.html.



TABLE II. AVERAGE ERROR RATES (%) AND STANDARD DEVIATIONS (%) FOR THE SSL ALGORITHMS ON INDUCTIVE SSL TASKS.

in-sample error
COIL2 DIGIT-1 G-241C G-241N USPS ranking

LapRLS 41.27 (6.75) 10.38 (6.36) 49.50 (1.54) 48.95 (2.17) 16.66 (7.63) 3.6
LapSVM 40.97 (5.61) 14.90 (5.64) 49.54 (1.49) 49.02 (2.00) 18.88 (7.14) 4.6

H-GFHF(LC) 46.42 (6.58) 15.49 (9.85) 49.64 (1.28) 49.45 (1.30) 16.97 (4.09) 5.8
H-GFHF(LN) 46.00 (6.75) 10.29 (6.43) 49.44 (1.61) 48.87 (2.21) 14.24 (5.19) 2.6

K-GFHF 46.00 (6.75) 10.29 (6.43) 49.44 (1.61) 48.87 (2.21) 16.77 (7.76) 3.2
K-CGFHF 34.30 (4.94) 7.35 (3.79) 42.58 (3.29) 46.81 (3.65) 16.21 (6.88) 1.2

out-of-sample error
COIL2 DIGIT-1 G-241C G-241N USPS ranking

LapRLS 38.85 (5.80) 10.91 (6.61) 49.80 (1.27) 49.50 (2.09) 17.37 (7.46) 4.8
LapSVM 38.82 (5.84) 10.92 (6.57) 49.74 (1.50) 49.42 (2.25) 17.45 (7.31) 4.4

H-GFHF(LC) 40.93 (6.73) 15.45 (9.79) 49.60 (1.14) 49.46 (1.29) 16.95 (4.00) 4.2
H-GFHF(LN) 40.89 (6.98) 10.25 (6.40) 49.61 (1.27) 49.25 (1.92) 14.42 (4.97) 2.6

K-GFHF 37.31 (5.98) 10.82 (6.66) 49.73 (1.54) 49.41 (2.25) 17.47 (7.57) 3.6
K-CGFHF 34.32 (5.26) 7.50 (3.99) 35.64 (4.46) 47.18 (5.07) 16.99 (6.51) 1.4

as suggested in [24].

From W, we generated a graph Laplacian L. Since
the normalized Laplacian LN may lead to better results in
comparison to the combinatorial Laplacian LC [19], we used
LN as “basis” Laplacian when applicable. We generated LC
and LN as LC = ηD−W and LN = ηIn−D−1/2WD−1/2,
respectively, as suggested in [20]. A small η > 1 is used
to increase the eigenvalues of the graph Laplacians in an
attempt to overcome numerical instabilities while solving
linear systems using these Laplacians. We set η = 1.01, as
suggested in [20].

Since higher order regularization is effective on SSL
tasks [25], we used in LapRLS, LapSVM, K-GFHF, and K-
CGFHF the iterated Laplacian LI = Lp

N with p ∈ N∗. We
set p = 2, as suggested in [18].

The kernel matrix K was generated from X using the
RBF kernel, as in (36). We used the same parameter estima-
tion in (37) to choose the value of σ.

We ran LapSVM using the source code in [26]10 with the
default values for code parameters. We trained LapSVM in
the primal using Newton’s method instead of preconditioned
conjugate gradient, as suggested in [20]. For LapRLS and
LapSVM, we set γA = 10−6, γI = 10−2, which achieved
the best results during preliminary experiments.

Assume that k̃ ∈ N∗ is the number of neighbors of x̃ in
X , which should be small and usually k̃ ≤ k. For H-GFHF,
we set k̃ = 5 for both LC and LN. For K-CGFHF, we set ω as
the class prior probabilities for USPS and the uniform class
distribution (ω = 1c/c) for the other data sets, as suggested
in [20].

B. Evaluation

For a fair comparison, we used the same experimental
protocol in [27]. Specifically, we performed 10 times 4-
fold cross validation using each fold as a test set once.
For each train/test split, 10 random choices of l = 5c
labeled examples were done in the current training set (three
folds) without stratification, ensuring that there is at least one
labeled example of each class.

10http://www.dii.unisi.it/∼melacci/lapsvmp/index.html.

The SSL methods were trained in the current training set
(containing labeled and unlabeled sets) and we evaluate their
classification performance on the unlabeled and test sets.
We call in-sample error and out-of-sample error the average
error rates achieved by the methods on the unlabeled and test
sets, respectively.

C. Results

Table II shows the classification performances of the SSL
methods for both transduction and induction using the data
sets described in Table I and the average rankings of the
corresponding methods. The best result in each data set for
both transduction and induction is marked in bold face. The
three worst results in each data set for both transduction and
induction have a grey background.

Since we were analyzing the relative rankings of many
algorithms over many data sets, we ran the Friedman’s test11

with the Bonferroni’s post test using a significance level
of 0.05. We used the software Orange12 to perform our
statistical analysis. We set K-CGFHF as “control” method.
The rankings referred to the methods that were statistically
outperformed by our method are marked with a grey back-
ground.

From Table II, we see that K-CGFHF achieved the best
result in 4 out of 5 data sets for both transduction and
induction, being outperformed by H-GFHF(LN) in the USPS
data set. On COIL2, DIGIT-1, and G-241C, our results
outperformed the competing methods by a large margin.
Therefore, these results evidence the effectiveness of higher
order regularization combined with the normalization cons-
traints in [17] for both transductive and inductive SSL tasks
using the RBF kernel.

Considering that a data set has high unbalanced ratio
if the majority class has at least three times more examples
than the minority class, the authors in [5] showed that RMGT
may be uneffective on data sets with high unbalanced ratio.
The authors provided experiments on a variety of unbalanced
data sets from the time series domain. Detailed results can
be found in [1].

11See [28] for a review on statistical tests for machine learning.
12http://orange.biolab.si/.



Since our method is a generalization of RMGT, such
an issue may also occur on our method, independently
of the kernel function used. This may explain the poor
classification performance of our method on the USPS data
set. Unfortunately, even with a careful parameter selection
our method provided no satisfactory results on data sets with
high unbalanced ratio.

LapSVM and H-GFHF(LC) were statistically outper-
formed by K-CGFHF on the unlabeled sets. However, only
LapRLS was statistically outperformed by K-CGFHF on the
test sets. Although our method frequently achieved better
results than the competing methods, the statistical tests found
significant differences only in a few cases. This is likely to
be due to the use of a non-parametric statistical test which
requires results in more data sets in order to detect additional
significant differences.

VI. CONCLUSION

In this paper, we generalized GFHF, RMGT, and
RMGTHOR for inductive SSL through the kernel expansions
in [22]. The generalized methods (K-GFHF and K-CGFHF)
yield the same transductive solution of the corresponding
base methods, independently of the kernel function used.
Therefore, we maintain the classification performance of the
base methods on the unlabeled sets and provide inductive
classification through kernel expansions over both labeled
and unlabeled examples.

Moreover, K-GFHF and K-CGFHF are parameter-free.
This is a great advantage over other SSL methods like
LapRLS and LapSVM, which may require a careful para-
meter selection and may be strongly dependent of parameter
selection on some data sets [29].

Through experiments on inductive SSL tasks on bench-
mark data sets, we showed the effectiveness of the proposed
method for both transduction and induction. Specifically, we
showed that our method achieved the best result on most data
sets. Moreover, our method achieved the best average ranking
for both in-sample and out-of-sample error, outperforming
the competing methods.

However, our method may be uneffective on data sets
with high unbalanced ratio, as its base method RMGT. A
way to overcome this issue will be investigated in future
research.
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