

Energy-efficient and Robust Cumulative Training
with Net2Net Transformation

Aosong Feng, and Priyadarshini Panda*, Member, IEEE
Department of Electrical Engineering,

Yale University, USA, 06510
*Correspondence: priya.panda@yale.edu

Abstract— Deep learning has achieved state-of-the-art
accuracies on several computer vision tasks. However, the
computational and energy requirements associated with training
such deep neural networks can be quite high. In this paper, we
propose a cumulative training strategy with Net2Net transformation
that achieves training computational efficiency without incurring
large accuracy loss, in comparison to a model trained from scratch.
We achieve this by first training a small network (with lesser
parameters) on a small subset of the original dataset, and then
gradually expanding the network using Net2Net transformation to
train incrementally on larger subsets of the dataset. This incremental
training strategy with Net2Net utilizes function-preserving
transformations that transfers knowledge from each previous small
network to the next larger network, thereby, reducing the overall
training complexity. Our experiments demonstrate that compared
with training from scratch, cumulative training yields ~2x reduction
in computational complexity for training TinyImageNet using
VGG19 at iso-accuracy. Besides training efficiency, a key advantage
of our cumulative training strategy is that we can perform pruning
during Net2Net expansion to obtain a final network with optimal
configuration (~0.4x lower inference compute complexity) compared
to conventional training from scratch. We also demonstrate that the
final network obtained from cumulative training yields better
generalization performance and noise robustness. Further, we show
that mutual inference from all the networks created with cumulative
Net2Net expansion enables improved adversarial input detection.

I. INTRODUCTION

Deep learning neural networks have emerged as a powerful
tool in various fields to perceive, detect and classify different
forms of data [1, 2]. On the one hand, larger datasets such as,
CIFAR100 [3], ImageNet [4] have been collected to evaluate
performance of neural networks; on the other hand, researchers
have come up with deeper neural network architectures, such as
VGG [5] and ResNet [6] to deal with such datasets. Generally,
machine learning algorithms receive a fixed dataset as input,
initialize a new neural network with no prior knowledge, and
then train that model to convergence by repeated iterations of
forward and backward propagation on the entire dataset. Thus,
training a large network (with millions of parameters) from
scratch using large datasets requires the full model to be stored
and updated during each iteration of training. This consumes
considerable storage, memory and computational resources.

A stream of work in building efficient networks is through
knowledge distillation [7] that enables small low memory
footprint networks to mimic the behavior of large complex
networks. Net2Net technique proposed by Chen et al. [8] is an
inverse variant of the knowledge distillation technique that
serves as an efficient way to train a significantly larger neural

network from a small neural network. Net2Net uses function
preserving transformations to expand small neural networks
into wider or deeper networks while preserving and transferring
the knowledge from the previously trained small networks into
each larger version. Net2Net accelerates the training process and
also improves the performance of the network on large datasets.

In this paper, we propose a cumulative training strategy with
Net2Net transformation that achieves training computational
efficiency without incurring large accuracy loss, in comparison
to a baseline model trained from scratch. Instead of utilizing the
full dataset and network with desired size throughout the
training process, we first train a small network (with lesser
parameters) on a small subset of the original dataset. Then, we
gradually expand the small network towards the desired size
using Net2Net transformation with incremental training on
larger subsets of the original dataset, as shown in Fig.1. This
cumulative training strategy with Net2Net utilizes function-
preserving transformations that transfers knowledge from each
previous small network (say, 𝑁𝑒𝑡ଵ or VGG11 in Fig. 1) and sub-
dataset (say, 𝐷ଵ or CIFAR50 in Fig. 1) to the next larger network
(say, 𝑁𝑒𝑡ଶ or VGG19 in Fig. 1) and larger sub-dataset (say, 𝐷ଶ
or CIFAR100 in Fig. 1 where, 𝐷ଵ ∈ 𝐷ଶ), thereby, reducing the
overall training complexity. One of the key advantages of using
Net2Net with cumulative training is that the new, larger network
(𝑁𝑒𝑡ଶ) immediately performs as well as the previous network

Fig. 1. The cumulative training process using Net2Net transformation.
VGG11 is expanded to VGG19 with Net2Net deeper transformation while
the number of neurons in the output layer increase from 50 to 100.

CIFAR50

3 3 conv, 64

3 3 conv, 128

VGG11

CIFAR100

3 3 conv, 64

3 3 conv, 64

VGG19

pool

pool

fc 100

3 3 conv, 128

3 3 conv, 128

pool

pool

Net2Net
deeper

×

×

×

×

×

×

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

(𝑁𝑒𝑡ଵ) on the new sub-dataset (𝐷ଶ), rather than spending time
passing through a period of low performance. Our experiments
show that the proposed cumulative training strategy yields better
training efficiency with improved robustness and generalization
performance (empirically evaluated with noise resilience and
ablation study [9]). We also combine pruning with cumulative
Net2Net training that yields a final neural network with
compact configuration (thus, delivering reduced inference
complexity) while being training-efficient. Please, note, all
reductions and improvements with our proposed strategy is
considered with respect to a baseline ‘trained from scratch’
model. Finally, we also find that ensemble or mutual inference
that utilizes the output from all the sub-networks (obtained with
cumulative training) to make the final prediction can be
beneficial to detect and resist against adversarial inputs.

II. RELATED WORK

A. Incremental learning

 Incremental learning, also known as life-long or evolutionary
learning, refers to online learning strategies which work with
limited memory resources [10]. They focus on how to learn in
a streaming setting, in which case the network will continuously
use the new input data to extend its knowledge when classes of
new labeled data are available. For example, support vector
machines have been used for incremental learning by training a
new classifier for each new stream of data and finally
combining all the classifiers to make the final decision [11].
Some methods also focus on learning new tasks from new
samples using transfer learning technique [12, 13]. Li et al. [14]
also proposed the concept of ‘learning without forgetting’.
They address the issue of using only new data to train the
network while keeping its original capabilities. Our method is
different from incremental training because we show both the
original and new data during retraining and expansion (hence,
termed as ‘cumulative training’), and, we focus on the energy
efficiency aspect of training.

B. Networks that share information

 Sharing part of the neural network is a good way to do
knowledge transfer between different models. For example.
Pham et al. [15] use parameter sharing to improve the
efficiency of network architecture search by forcing all the
child models to share the weights. Luong et al. [16] use
encoder-decoder sharing to combine multi-task learning with
sequence to sequence learning for natural language processing.
Partial network sharing strategy for ‘learning without
forgetting’ [7] and tree-based efficient neural architectures [24,
25] have also been proposed. In such works, the authors keep
part of the network intact and retrain remaining part only on
new data. Our cumulative training scheme uses a similar
philosophy. All the models generated during the iterative
Net2Net expansion process share part of the information of
their common classes, and we can transfer such information
with function preserving transformations. Note, we show both
the old and new data at the retraining stage, in order to improve
the training convergence. A key difference between our
methods and other tree or partial network sharing methods is
that, we transform the same network end-to-end as we grow the
network and the dataset. Other methods, generally add new

branch of classifiers iteratively to the present network hierarchy
to perform partial network sharing.

 In general, incremental and network sharing strategies
mentioned above ultimately increase the training complexity of
the model as they add additional data without appropriate
knowledge transfer from previous configuration. Our
cumulative approach enables knowledge transfer at zero
accuracy loss due to Net2Net expansion and thus, gives a key
benefit of lower training complexity and faster convergence.

C. Net2Net training

 Our scheme uses the Net2Net expansion strategy [8]. The
main difference between [8] and our cumulative method is that
we split the entire dataset, and introduce a new sub-dataset into
the current training dataset every time we expand the model
with Net2Net. We continue this till the final network is trained
on the whole dataset. In contrast, Net2Net training [8] uses the
full dataset throughout the expansion and training process. Our
approach shows that the function preserving transformations
also carry information from one data sub-data domain to
another if trained in a cumulative manner.

III. EXPERIMENTAL METHODOLOGY

A. Net2Net methodology

Many network families have similar network architectures
within a family. For example, VGG19 has similar block
structure as VGG11, with 6 more convolution layers. Therefore,
we can expand VGG11 to VGG19, and instead of adding the
convolutional layers with random initialization, we use the
Net2Net deeper technique (see. Fig. 2) that performs expansion
while preserving the knowledge from trained VGG11. Such
expansion eliminates the need to train the new VGG19 model
from scratch again to attain the previous accuracy. The Net2Net
deepening technique allows us to transform any net into a deeper
one. It replaces a layer h(I) = Φ(h(i−1)W(i)) with two layers h(a) =
Φ(U(i)TΦ(W(i)T h(i−1))), as shown in Fig. 2, where Φ is the
activation function and W is the weight matrix for a given layer
i. The new matrix U is initialized to an identity matrix, but
remains free to learn to take any value later. For deepening
convolutional layers, we set the convolutional kernels to be
zero-surround filters with central value as 1 and remaining 0.

Fig. 2. Illustration of Net2Net expansion strategy. The deeper expansion
will add new layer that are initialized as identical mapping on top of the
original convolutional layer. Note, adding a convolutional layer will also
incur a new batchnorm layer. The weights represented by dash line in the
last output layer is randomly initialized.

deeper

output layer

train on dataset Dtr1 retrain on dataset {D ,D }tr1 tr2

indentity
mapping

Note, while we use deepening in this work, we can also utilize
Net2Net widening technique [8] that widens the layer size
during the expansion process.

A key variation of our proposed cumulative training from
that of standard Net2Net [8] is that the output layer also needs
to be expanded with desired units. Our expansion strategy is
accompanied with incremental training as we switch from one
sub-dataset to another during Net2Net expansion. We find that
we cannot simply use a wider Net2Net transformation (see [8]
for details) on the softmax output layer as it interferes with the
training convergence. Hence, for the final classifier layer, the
newly added connections are randomly initialized (see Fig. 2)
and are eventually learnt during the training process. As a result,
our method expands the network as well as its capability from
K1 to K1+ K2 output classification (in Fig. 1, we go from a 50-
class to 100-class classifier).

B. Cumulative Learning with Net2Net

 The algorithm of our training strategy is shown below.

Algorithm 1: Pseudo-code for Cumulative Training with
Net2Net
Input: Training and Testing datasets Dtr, Dte with target labels
Output: Final model learnt with cumulative Net2Net expansion
1. Split Dtr and Dte into sub-datasets {Dtr1, Dtr2, …, DtrN} and

{ Dte1, Dte2, …, DteN } where 𝐷௧,௧
∈ 𝐷௧,௧శభ

2. Initialize the base network 𝑁𝑒𝑡ଵ
3. Train 𝑁𝑒𝑡ଵ using Dtr1
4. for i = 2:N do
5. 𝑁𝑒𝑡 = Net2Netexpand(𝑁𝑒𝑡ିଵ)
// Note, Net2Netexpand() can either be widening or deepening
6. Expand the output layer of 𝑁𝑒𝑡ିଵ
// Output neurons added based on number of classes in Dtri
7. Train 𝑁𝑒𝑡 using Dtri
8. end for
 We divide the whole training process into multiple stages. In
the first stage, we train the small base network 𝑁𝑒𝑡ଵ using small
dataset Dtr1. In the subsequent stages, we iteratively expand the
trained neural network to the desired size using Net2Net scheme.
Simultaneously, we increase the number of final output layer’s
neurons in order to accommodate the total number of classes in
the new sub-dataset. Hence, we train a transformed network (say
𝑁𝑒𝑡) using larger dataset (say 𝐷௧ where, 𝐷௧ =

{𝐷௧ଵ, 𝐷௧ଶ … 𝐷௧}). We repeat this process across multiple
stages of expansion until we finish training the whole dataset
with the desired network shape. For example, in Fig. 1, instead
of training VGG19 network on CIFAR100 from scratch, we first
train a smaller VGG11 on CIFAR50, then expand VGG11 to
VGG19 using Net2Net deepening, and use CIFAR100 to train
it.

 A noteworthy point here is that the sub-networks obtained
with our technique are trained on the partial dataset in an
incremental manner, where, the current dataset contains all
previously shown data along with new data. It is the final
network that will receive the full dataset as input. The aim of
using Net2Net expansion with cumulative training is to
effectively transfer the partial data knowledge from one network
to another without loss in accuracy.

IV. EXPERIMENTAL RESULTS

In this section, we present the results that demonstrate the
energy efficiency and robustness of the cumulative training
scheme. We conduct a series of experiments, primarily using
CIFAR10, 100 and TinyImageNet dataset [18] on VGG
networks of different depths. We imported github models and
used similar hyperparameters and training methodologies as
[19, 20] to conduct our experiments in PyTorch. In all our
experiments, the baseline model refers to the model trained
from scratch on the full dataset. We compare the efficiency and
robustness of the final network obtained with cumulative
Net2Net training to that of the corresponding baseline. Note,
the final network obtained through Net2Net will be equivalent
in size to the baseline and receive the full dataset as input.

A. Training Efficiency

Fig. 3 compares the test accuracy vs. training epochs trend
of cumulative Net2Net expansion scheme with that of baseline
for CIFAR100 and TinyImageNet. For CIFAR, we expand the
network as VGG11VGG16 VGG19 while incrementally
expanding the dataset as CIFAR50 CIFAR70 CIFAR100.
We see that there is minimal loss in accuracy (<1%) as we
expand the network from one data domain (say, CIFAR50) to
another (say, CIFAR70). This implies that cumulative training
transfers information without loss of knowledge that eventually
causes faster convergence at lower complexity. Importantly,
Net2Net approach gives the same level of final accuracy as the

Fig. 3. Comparison between the cumulative training approach and baseline. The cumulative training scheme always converges faster towards the same accuracy
level with lesser epochs for (a) CIFAR100 and (b) TinyImageNet datasets. The plots shown are for 70, 30 epochs of training, respectively.

(a) (b)

Net2Net

baseline

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
 0

ac
cu

ra
cy

epochs
 0 10 20 30 40 50 60 70

train CIFAR50 using VGG11
train CIFAR70 using VGG16
train CIFAR100 using VGG19
train CIFAR100 using VGG19

epochs

0.6

0.5

0.4

0.3

0.2

0.1

 0

ac
cu

ra
cy

train TinyImageNet100 using VGG13

train TinyImageNet200 using VGG19

train TinyImageNet200 using VGG19

Net2Net

baseline

0 5 10 15 20 25 30

baseline model trained from scratch with almost the same
number of total training epochs. Note, the baseline model is a
large VGG19 network that will incur the same fixed compute
operations (OPS) throughout the training period. In contrast,
our approach initially trains smaller networks on smaller
datasets (that will incur lower OPS) and then progressively
expands to larger datasets/networks. The OPS incurred with
cumulative training is thus dynamic during the training process
which eventually results in lower overall training complexity.

We define the training computational complexity M for
cumulative training approach as

𝑀 = 𝛴ୀଵ
ே #𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠ே௧

 × #𝑀𝐴𝐶ே௧
 (1)

Total #MAC quantifies the total number of Multiply and
Accumulate operations (that translates to energy consumption)
incurred in a given sub-network 𝑁𝑒𝑡. For a sub-network 𝑁𝑒𝑡,
#Training Iterations specify the total number of training rounds
required to reach saturating accuracy. In case of cumulative
training, the total training complexity M is obtained by
summing the individual complexities of training each sub-
network. Note, the efficiency and robustness comparisons
between our approach and the baseline are done for iso-
accuracy. Essentially, we train both the baseline and each of the
sub-networks obtained with Net2Net until training convergence
or accuracy saturation occurs. Thus, the number of training
iterations in both baseline and our Net2Net model might vary.

Our results are summarized in Table 1. Across different
datasets, we obtain 0.5x-0.8x reduction in training complexity
at near iso-accuracy (+/-0.5% difference) compared to the

baseline. It is worth noting that the training complexity in our
approach dynamically changes and each sub-network expends
considerably lesser effort than the baseline. This can be
attributed to the apt information transfer with Net2Net from one
data domain to another which in some ways also improves the
convergence behavior and overall accuracy.

We also observe that the complexity M is dependent on the
number of intermediate expansion stages (say, N). For instance,
CIFAR20-50-70-100 (N=4, M=0.54x) incurs higher
complexity than CIFAR50-70-100 (N=3, M=0.47x). The
general trend is that complexity M increases with N. Further,
the starting point of the cumulative training procedure is also
crucial to the end accuracy and M. For instance, having a
smaller dataset in the beginning, such as, CIFAR20-70-100
scenario yields slightly better accuracy (70.7%) at higher M
(0.76x) than CIFAR50-70-100 (accuracy = 68.4%, M = 0.47x).

B. Pruning and Zero Mask Training

Besides training efficiency, a key advantage of our
cumulative training strategy is that we can perform pruning
during Net2Net expansion to obtain a final network with
compressed size (thus, lower inference compute OPS)
compared to baseline. Here, we use the L1 norm based kernel
pruning scheme and prune full filter kernels in the
convolutional layers of a network [21]. Note, we do not prune
the fully connected layers in this case. Essentially, during the
cumulative training process, before applying the Net2Net
expansion, we prune the filters of the learnt network from the
current stage. We define a pruning ratio R which measures the

Table 2: Summary of Pruning and Zero Mask Training. All (values) shown in brackets are comparisons with
respect to a baseline model trained from scratch without pruning. For #parameters, M, #MAC, values <1 denote
improvement.

 Type #Parameters
Accuracy

(%)
M # MAC

CIFAR
50-100

VGG11-19

Net2Net (R=0) 20M (1x) 70.5 (+0.3%) 490.0T (0.53x) 398.1M (1x)
Net2Net (R= 50% for

VGG11)
15.41M (0.77x) 70.4 (+0.2%) 388.5T (0.42x) 350.2M (0.88x)

Keep Net2Net zero mask
(R= 50% for VGG11)

9.22M (0.46x) 70.0 (-0.2%) 334.9T (0.36x) 152.9M (0.38x)

Tiny
ImageNet
100-200

VGG13-19

Net2Net (R=0) 20M (1x) 47.9 (+0.9%) 1.9P (0.5x) 1.59G (1x)

Net2Net ((R= 50% for
VGG13)

15.32M (0.77x) 47.9 (+0.9%) 2.04P (0.54x) 1.4G (0.88x)

Keep Net2Net zero mask
(R= 50% for VGG13)

10.61M (0.53x) 46.5 (-0.5%) 9.06P (2.37x) 611.7M (0.37x)

Table 1: Summary of Results. The final accuracy obtained with cumulative training is highlighted in each scenario. The
total training complexity (M) calculated from Eqn. 1 denotes the total compute incurred in T-Tera, P-Peta OPS. We show
the accuracy, M for each sub-network (𝑁𝑒𝑡𝑖) trained on the sub-dataset as well as total M (Σ𝑀ே௧

) compared to Baseline.
Cumulative Net2Net Training Baseline

Data
Networks

(𝑵𝒆𝒕𝒊)
Accuracy

(%)
𝑴𝑵𝒆𝒕𝒊

 M = 𝚺𝒊𝑴𝑵𝒆𝒕𝒊
 Accuracy (%) M (1x)

CIFAR5-10 VGG11-16 87.4-90.7 99.3T-313.0T 412.3T (0.77x) 90.7 532.1T
CIFAR50-100 VGG11-19 68.7-70.5 107.0T-383.0T 490.0T (0.53x) 70.2 919.2T

CIFAR50-70-100 VGG11-16-19 68.7-68.7-68.4 107.0T-98.6T-229.8T 435.4T (0.47x) 70.2 919.2T
CIFAR20-70-100 VGG11-16-19 70.3-69.6-70.7 23.0T-252.0T-421.3T 696.2T(0.76x) 70.2 919.2T

CIFAR20-50-70-100
VGG11-13-16

-19
70.3-69.7-
70.1-69.6

23.0T-79.8T-
108.55T-287.3T

499.6T(0.54x) 70.2 919.2T

TinyImageNet100-200 VGG13-19 52.4-47.9 0.5P-1.4P 1.9P (0.50x) 47 3.8P
TinyImageNet

50-100-150-200
VGG11-13-

16-19
51.1-49.6-
47.2-46.4

0.2P-0.45P-0.75P-
1.27P

2.7P (0.71x) 47 3.8P

ratio of total number of pruned kernels to the total number of
kernels in the convolutional layers of the network.

Table 2 shows the parameter reduction, accuracy, total
training complexity (M) for pruning with cumulative Net2Net
training and the total inference OPS (quantified as #MACs) for
different scenarios. We have a case corresponding to pruning
while keeping the Net2Net zero mask intact. While expanding
the convolutional layers with Net2Net technique, the filters are
essentially identically mapped with a zero-surround kernel. For
a 3x3 kernel, the central position is identity or 1 and the
remaining 8 values are 0. Thus, the Net2Net expansion scheme
inherently introduces a sparse zero mask kernel. The values of
this new kernel can eventually take non-zero values during the
learning process. While performing the pruning experiments,
after pruning a network (R=50%) and then expanding it, we
chose to fix the zero values in the expanded kernels during the
next stage training. Note, in the zero mask case, we calculate
the #MACs considering that our hardware contains a zero-
checker logic that can discount the zero operations. As a result,
#MAC in the pruning with zero mask case in Table 2 is lower
than that of simple pruning.

For CIFAR50-100 case (corresponding to VGG11-19
expansion), simple pruning (with R=50%) and combined
pruning with zero mask training results in good accuracy with
improved M and overall inference OPS. In TinyImageNet100-
200 case, simple pruning (R=50%) does not affect the
accuracy/complexity. However, we observe a drastic increase
in M to reach the same level of accuracy as the baseline or
Net2Net (R=0, R=50%) when we apply zero mask intact
condition. This means that as the complexity of data increases,
all the new kernels and weights added through the expansion
procedure need to undergo learning to achieve good and fast
training convergence.

C. Robustness of cumulative training

 We also conducted noise analysis and ablation study [9] to
analyze the robustness of our cumulative training technique.

Both noise and ablation resiliency have been shown to
characterize the overall generalization capability of a network
[9]. Noise analysis was done by adding gaussian noise to the
input images and monitoring the accuracy of the network with
increasing noise variance. Fig. 5(a) compares the noise
resiliency of a model trained with cumulative training (VGG11-
19 on CIFAR50-100) against a baseline VGG19 trained on
CIFAR100 fully. Fig. 5 (c) shows the resiliency of the networks
(corresponding to CIFAR50-100 as above) when we ablate or
zero out a fraction of units from the convolutional layers. In
both cases we find that the baseline model has a sharper drop in
accuracy than the model trained with Net2Net expansion. This
means that our method yields more resilient networks. Similar
robustness results were obtained for TinyImageNet100-200
scenario with VGG13-19 expansion (Fig. 5(b, d)).

D. Mutual Inference for Adversarial Input and Error Detection

 Another characteristic of Net2Net cumulative training
strategy is that it will generate several different types of sub-
networks with partial knowledge of the full dataset during
training. Typically, we discard all the sub-networks and only
use the final network obtained at the end of training for
inference. Say, we have enough memory (such as in cloud
servers) and can save the models generated, we can leverage all

Table 3: Comparison of adversarial accuracy of models across
different scenarios. The Net2Net expansion here follows Table 1.

𝝐

CIFAR50-70-100 TinyImageNet50-100-150-200

Net2Net
(w/ MI)

Net2Net
(w/o
MI)

Baseline
Net2Net
(w/ MI)

Net2Net
(w/o
MI)

Baseline

0 69.83 68.40 70.20 47.38 46.43 47.43
0.005 60.86 59.66 57.99 37.53 33.96 35.13
0.01 53.79 50.65 47.98 30.21 24.91 25.63
0.02 40.58 36.77 34.71 20.69 13.5 13.72
0.05 22.90 17.76 12.93 9.00 3.07 3.44
0.1 13.18 9.03 8.20 3.56 0.66 1.59

Fig. 4. Robustness of model trained with cumulative Net2Net training in comparison to baseline is shown. (a), (c) show the results of noise variation and ablation
study for VGG11-19 CIFAR50-100 scenario, respectively. (b), (d) show the corresponding results on VGG13-19 TinyImageNet100-200.

(a) (b)

(c) (d)

model trained by Net2Net

model trained from scratch

model trained by Net2Net

model trained from scratch

model trained by Net2Net

model trained from scratch

model trained by Net2Net

model trained from scratch

1.0

0.8

0.6

0.4

0.2

 0no
rm

al
iz

ed
 a

cc
ur

ac
y

0 0.2 0.4 0.6 0.8 1.0
noise variance

0 0.05 0.1 0.15 0.2 0.25 0.3
ablation proportion

1.0

0.8

0.6

0.4

0.2

 0no
rm

al
iz

ed
 a

cc
ur

ac
y

1.0

0.8

0.6

0.4

0.2

 0no
rm

al
iz

ed
 a

cc
ur

ac
y 1.0

0.8

0.6

0.4

0.2

 0no
rm

al
iz

ed
 a

cc
ur

ac
y

0 0.2 0.4 0.6 0.8 1.0
noise variance

0 0.05 0.1 0.15 0.2 0.25 0.3
ablation proportion

the sub-network’s knowledge together with the final network to
further improve the overall performance using an ensemble or
mutual inference (MI) scheme. In cumulative training of
CIFAR50-70-100, we obtain a final VGG19 trained using
CIFAR100, a sub-network VGG11, VGG16 trained on
CIFAR50, CIFAR70, respectively. For MI, we combine the
predictions from the three networks using a weighted majority
vote. Previously, with single model inference, we obtained
68.40% accuracy for VGG11-16-19 expansion on CIFAR50-
70-100 and 46.43% accuracy on VGG11-13-16-19 expansion
on TinyImageNet50-100-150-200. The MI scheme increases
the accuracy of CIFAR model to 69.83% and TinyImageNet to
47.38%. It is evident that MI incurs higher inference OPS for a
marginal improvement in accuracy. Then, the question arises if
there any benefit to using MI.

The ability to detect adversarial samples is a very important
capability to safeguard neural networks. We find that MI
improves the adversarial robustness of networks. Table 3
compares the adversarial accuracy of Net2Net models with and
without MI when exposed to adversarial test inputs created

using FGSM attack [22] with varying attack strength (𝜖).
Net2Net without MI corresponds to the case when we use the
final network obtained with cumulative training to make the
prediction. All attacks are conducted assuming attacker has full
knowledge of the model in the baseline and Net2Net without
MI case. For Net2Net with MI case, we assume the attacker has
no knowledge of the initial sub-networks but has complete
knowledge about the final network. As shown in Table 3,
Net2Net with MI yields higher accuracy than the other cases as
𝜖 increases.

 We further use the MI scheme to detect adversarial inputs
by enhancing the capability of the network to predict no-
decisions. MI scheme for no-decision prediction is illustrated in
Fig. 5. We use a thresholding technique similar to that of
Hendrycks et al. [23] to test adversarial input detection ability.
The inputs which are either correctly classified or classified as
no-decision contribute towards good decisions. The inputs
which are misclassified are considered as bad decisions.
Therefore, the input prediction with thresholding as shown in
Fig. 5 for both standard and MI case can fall into three buckets:
(a) Inputs which are correctly classified (b) Inputs which are
classified as ‘no-decisions’ (c) Inputs which are incorrectly
classified. We report False Negative Rate (FNR) and True
Negative Rate (TNR) to evaluate the adversarial detection
ability of the Net2Net model with and without MI. The no-
decision prediction in Net2Net without MI is conducted using
standard model inference shown in Fig. 5. Our goal is to
increase TNR while keeping FNR as low as possible. By using
different threshold, we get the plot of TNR vs. FNR in Fig. 6.
For a given FNR, TNR of Net2Net with MI is much higher than
the TNR of Net2Net without MI. We believe that the partial
knowledge and sharing of information between the sub-
networks with MI improves the no-decision prediction
capability. Note, in comparison to baseline, a model obtained
with Net2Net cumulative training (both with or without MI) has
higher TNR/FNR ratio.

V. CONCLUSION

 In this work, we propose a cumulative training scheme
using Net2Net which incrementally expands the network and the
dataset at the same time. Compared with training a model on the
entire dataset from scratch (or baseline), our cumulative training
method yields better training efficiency. This efficiency gain is
due to the fact that our approach trains smaller networks on
partial datasets and gradually increases the network size and the

Fig. 5. Here, VGG19 is expanded from VGG16 and VGG11. In mutual
inference, we use the information from all 3 networks to get the final result.
To produce no-decision, generally, in standard case (final VGG19 obtained
with Net2Net or baseline model), we compare the model’s softmax
confidence with a user-defined threshold δ to make a final decision. In
mutual inference, we threshold the softmax output across all models that
provides a stronger notion of no-decision.

prediction1

VGG16

VGG11

VGG19

test image

prediction2 prediction3

P > ?
no

decisions

prediction

N

Y

VGG19

test image

prediction

P > ? no
decisions

prediction

N

Y

mutual inference standard

Fig. 6. By changing the threshold, we can get the relationship between TNR and FNR for (a) CIFAR50-70-100 and (b) TinyImageNet50-100-150-200 with
and without mutual inference. The curve which approaches the left upper corner of the plot yields better adversarial detection ability.

1.0

0.8

0.6

0.4

0.2

 0

T
N

R

1.0

0.8

0.6

0.4

0.2

 0

T
N

R

0 0.2 0.4 0.6 0.8 1.0
FNR

(a) (b)

MI
final network expanded
by Net2Net without MI

MI
final network expanded
by Net2Net without MI

0 0.2 0.4 0.6 0.8 1.0
FNR

dataset while performing good knowledge transfer without any
loss in performance. Combining Net2Net expansion with
pruning, we show that cumulative training can be leveraged to
obtain a high performing final network with compressed
configuration and therefore less inference complexity. The
generalization performance and robustness to noise of the final
model obtained by cumulative training was also demonstrated to
be better than the baseline model. Finally, we show that we can
use all the models generated during the cumulative training
expansion process for mutual or ensemble inference. Mutual
inference enhances the robustness to adversarial attack and
improves error detection ability with no-decision prediction.

ACKNOWLEDGEMENT

This work is supported in part by the National Science
Foundation (Grant#1947826) and by the Amazon Research
Award.

REFERENCES
[1] Y. Netzer et al., “Reading digits in natural images with unsupervised

feature learning,” In NIPS, 2011.
[2] G. Hinton et al., “Deep neural networks for acoustic modeling in speech

recognition,” Signal Processing Magazine, 2012.
[3] A. Krizhevsky, “Learning multiple layers of features from tiny images,”

Tech Report, 2009.
[4] J. Deng et al., “ImageNet: A large-scale hierarchical image database,” In

CVPR, 2009.
[5] K. Simonyan et al., “Very deep convolutional networks for large-scale

image recognition,” in ICLR, 2015.
[6] K. He et al., “Deep residual learning for image recognition,” arXiv

preprint arXiv:1512.03385, 2015.

[7] G. Hinton, et al., “Distilling the knowledge in a neural
network,” arXiv:1503.02531.

[8] T. Chen, et al., “Net2net: Accelerating learning via knowledge transfer,”
In ICLR, 2016.

[9] A. S. Morcos, et.al, “On the importance of single directions for
generalization,” in ICLR, 2018.

[10] A. Gepperth et. al, “Incremental learning algorithms and applications,” in
ESANN, 2016

[11] Y. M. Wen et. al, “Incremental learning of support vector machines by
classifier combining,” in PAKDD, 2007

[12] L. Fei-Fei, et al., “One-shot learning of object categories,” PAMI, 2006.
[13] C. H. Lampert, et al., “Learning to detect unseen object classes by

between-class attribute transfer,” in CVPR, 2009.
[14] Z. Li et al., “Learning without forgetting,” in ECCV, 2016.
[15] H. Pham, et al., “Efficient Neural Architecture Search via Parameter

Sharing,” in ICML, 2018
[16] M.-T. Luong, et al., “Multi-task Sequence to Sequence Learning,” in

ICLR, 2016.
[17] S. S. Sarwar et al., “Incremental learning in deep convolutional neural

networks using partial network sharing,” arXiv:1712.02719, 2017.
[18] Lucas Hansen, “Tiny imagenet challenge submission,” CS 231N, 2015.
[19] [Online] https://github.com/kuangliu/pytorch-cifar
[20] [Online] https://github.com/tjmoon0104/Tiny-ImageNet-Classifier
[21] S. Han et al. "Learning both weights and connections for efficient neural

network." In NIPS, 2015.
[22] G. Ian, et al., “Explaining & harnessing adversarial examples,” in ICLR,

2015.
[23] D. Hendrycks et al., “A baseline for detecting misclassified and out-of-

distribution examples in neural networks,” in ICLR, 2017.
[24] P. Panda, et al., “FALCON: Feature driven selective classification for

energy-efficient image recognition,” IEEE TCAD, 2017.
[25] D. Roy, et al. “Tree-CNN: a hierarchical deep convolutional neural

network for incremental learning.” Neural Networks, 121, 148-160, 2020.

