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Abstract—In semantic segmentation datasets, classes of high
importance are oftentimes underrepresented, e.g., humans in
street scenes. Neural networks are usually trained to reduce the
overall number of errors, attaching identical loss to errors of
all kinds. However, this is not necessarily aligned with human
intuition. For instance, an overlooked pedestrian seems more
severe than an incorrectly detected one. One possible remedy
is to deploy different decision rules by introducing class priors
that assign more weight to underrepresented classes. While
reducing the false negatives of the underrepresented class, at
the same time this leads to a considerable increase of false
positive indications. In this work, we combine decision rules with
methods for false positive detection. Therefore, we fuse false
negative detection with uncertainty based false positive meta
classification. We present the efficiency of our method for the
semantic segmentation of street scenes on the Cityscapes dataset
based on predicted instances of the “human” class. In the latter
we employ an advanced false positive detection method using
uncertainty measures aggregated over instances. We, thereby,
achieve improved trade-offs between false negative and false
positive samples of the underrepresented classes.

Index Terms—computer vision, convolutional neural networks,
class imbalance, false negative reduction

I. INTRODUCTION

Deep learning has improved the state-of-the-art in a broad
field of applications such as computer vision, speech recog-
nition and natural language processing by introducing deep
convolutional neural networks (CNNs). Although class imbal-
ance is a well-known problem of traditional machine learning
models, little work has been done to examine and handle
the effects on deep learning models; however, see [1] for
a recent review. Class imbalance in a dataset occurs when
at least one class contains significantly less examples than
another class. The performance of CNNs for classification
problems has empirically been shown to be detrimentally
affected when applied on skewed training data [2], [3] by
revealing a bias towards the overrepresented class. Semantic
segmentation, seen as a pixel-wise classification problem, thus
exhibits the same set of problems when class imbalance is
present. As imbalance naturally exists in most datasets for
“real world” applications, finding the underrepresented class
is oftentimes of highest interest.

Methods for handling class imbalance have been developed
and can be divided into two main categories [1], [2], [4]: sam-
pling based and algorithm based techniques. While sampling
based methods operate directly on a dataset with the aim to
balance its class distribution, algorithm based methods include
a cost scheme to modify the learning process or decision
making of a classifier.

In the simplest form, data is balanced by randomly discard-
ing samples from frequent (majority) groups and/or randomly
duplicating samples from less frequent (minority) groups.
These techniques are known as oversampling and under-
sampling [5], respectively. They can lead to performance
improvement, in particular with random oversampling [2],
[3], [6] unless there is no overfitting [7]. A more advanced
approach called SMOTE [8] alleviates the latter issue by
creating synthetic examples of minority classes.

Sampling based methods are difficult to apply to semantic
segmentation datasets due to inherent class frequencies within
single input images. Considering the Cityscapes [9] dataset of
urban street scenes for instance, the number of annotated road
pixels exceeds the number of annotated person pixels by a
factor of roughly 25 despite the fact that persons are already
strongly represented in this datatset as exclusively urban street
scenes are shown from a car driver’s perspective.

In general, class imbalance can be tackled during training by
assigning costs to different classification mistakes for different
classes and including them in the loss function [10], [11], [12].
Instead of the total error, the average misclassifcation cost is
minimized. In addition, methods learning the cost parameters
throughout training have been proposed [13], [14] and thus
circumventing the ethical problem of predefining them [15].
These methods require only little tuning and outperform sam-
pling based approaches without significantly affecting training
time. Modifying the loss function, however, biases the CNN’s
output.

One approach to address class imbalance during inference is
output thresholding, thus interchanging the standard maximum
a-posteriori probability (MAP) principle for an alternative
decision rule. Dividing the CNN’s output by the estimated
prior probabilities for each class is proposed in [2], [16] which
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is also known as Maximum Likelihood rule in decision the-
ory [17]. This results in a reduced likelihood of misclassifying
minority class objects and a performance gain in particular
with respect to rare classes. Output thresholding affects nei-
ther training time nor the model’s capability to discriminate
between different groups. It is still a suitable technique for
reducing class biases as it shifts the priority to predicting
certain classes and it can be easily added on top of any CNN.

In the field of semantic segmentation of street scenes, the
overall performance metric intersection over union (IoU) [18]
is used primarily. This metric is highly biased towards large
and therefore majority class objects such as street or build-
ings. As a remedy, IoU scores are calculated per class and
then averaged. Currently, state-of-the-art models achieve mean
class IoU scores of 83% for Cityscapes [9] and 73% for
Kitti [19]. Further maximizing global performance measures is
important but does not necessarily improve the overall system
performance. The priority shifts to rare and potentially more
important classes, where the lack of reliable detection has
potentially fatal consequences in applications like automated
driving.

In this context, uncertainty estimates are helpful as they can
be used to quantify the likelihood of predictions being incor-
rect. Using the maximum softmax probability as confidence
estimate has been shown to effectively identify misclassifi-
cations in image classification problems which can serve as
baseline across many other applications [20]. More advanced
techniques include Bayesian neural networks (BNNs) that
yield posterior distributions over the model’s weight param-
eters [21]. As BNNs come with a prohibitive computational
cost, recent works developed approximations such as Monte-
Carlo dropout [22] or stochastic batch normalization [23].
These methods generate uncertainty estimates by sampling,
i.e., through multiple forward passes. These sampling ap-
proaches are applicable for most CNNs as they do not assume
any specific network architecture, but they tend to be computa-
tionally expensive during inference. Other frameworks include
learning uncertainty estimates via a separate output branch in
CNNs [24], [25] which seems to be more adequate in terms
of computational efficiency.

In semantic segmentation, uncertainty estimates are usually
visualized as spatial heatmaps. Nevertheless, it is possible
that CNNs show poor performance but also high confidence
scores [26]. Therefore, auxiliary machine learning models for
predicting the segmentation quality [14], [27] have been pro-
posed. While some methods build upon hand-crafted features,
some other methods apply CNNs for that task by learning a
mapping from the final segmentation to its prediction qual-
ity [28], [29]. A segment based prediction rating method for
semantic segmentation was proposed in [30] and extended
in [31], [32]. They derive aggregated dispersion metrics from
the CNN’s softmax output and pass them through a classifier
that discriminates whether a predicted segment intersects with
the ground truth or not. These hand-crafted metrics have shown
to be well-correlated with the calculated segment-wise IoU.
This method is termed “MetaSeg”.

In this present work, we introduce a novel method for
semantic segmentation in order to reduce the false negative
rate of rare class objects and alleviate the effects of strong
class imbalance in data. The proposed method consists of two
steps: First, we apply the Maximum Likelihood decision rule
that adjusts the neural network’s probabilistic / softmax output
with the prior class distribution estimated from the training
set. This way, less instances of rare classes are overlooked but
to the detriment of producing more false positive predictions
of the same class. Afterwards, we apply MetaSeg to extract
dispersion measures from the balanced softmax output and,
based upon that, discard the additional false positive segments
in the generated segmentation mask.

This work combines the methods presented in [16] and [30],
resulting in a novel approach to reducing false negatives
corresponding to rare classes. Some of the techniques used by
us for the detection of false positive and false negative samples
separately emerge from a quite recent line of development and
the present paper contributes to showing their potential when
combining them.

In many situations where CNNs are applied in a safety-
critical context, weighting all errors equally for pure perfor-
mance [15] might be inappropriate. For instance in the use
case of autonomous driving, confusing a pedestrian (minority
class) with the street (majority class) is more severe than the
other way round. The potential consequences of a single event
of the first kind (accident with a pedestrian) far outweigh
the event’s consequences of the second kind (unnecessary
emergency stop). Nevertheless, a too frequent occurrence of
false positive person indications will considerably degrade the
customers’ experience. Compared to other methods for false
negative reduction, like using different class weightings for
decision thresholding, our method provides a more favorable
trade-off between error rates. Hence, this work contributes
to making alternative decision rules much more favorable in
practical applications.

As a pure post-processing tool (no additional CNN infer-
ences, no CNN retraining with modified cost functions and no
resampling the dataset are required), our method can be seam-
lessly added on top of any CNN for semantic segmentation.
Compared to a CNN’s inference complexity, the complexity
of our post-processing step is negligible. We believe that the
envisioned use case in automated driving is a consumers’
market in which inference cost matters. Hence, our presented
method is designed to have online capabilities that are in reach.
To the best of our knowledge, in the context of semantic
segmentation this is the first work on segment based false
negative reduction by purely post-processing CNN inferences.

The remainder of this work is structured as follows: In
sections II and III, we recall the building blocks of our
approach, namely the Maximum Likelihood decision rule for
the reduction of false negatives and MetaSeg for false positive
detection, respectively. In section IV, we present how these
two components are combined. We apply our approach to the
application-relevant task of semantic segmentation and show
numerical results for the Cityscapes dataset in section V.



II. MAXIMUM LIKELIHOOD DECISION RULE

Neural Networks for semantic segmentation can be viewed
as statistical models providing pixel-wise probability distribu-
tions that express the confidence of predicting the correct class
label y within a set Y := {1, . . . , l} of predefined classes. The
classification at pixel location z ∈ Z is then performed by
applying the argmax function to the posterior probabilities /
softmax output pz(y|x) ∈ [0, 1] after processing image x ∈ X .
In the field of Deep Learning, this decision principle, called
the maximum a-posteriori probability (MAP) principle, is by
far the most commonly used one:

dBayes(x)z := argmax
y∈Y

pz(y|x) . (1)

In this way, the overall risk of incorrect classifications is
minimized, i.e., for any other decision rule d : [0, 1]|Z| 7→ Y |Z|
and with

Rsym(d) :=
1

|Z|
∑
z∈Z

∑
y∈Y

1{d(x)z 6=y}pz(y|x) ∀ x ∈ X (2)

we have Rsym(dBayes) ≤ Rsym(d). In decision theory, this
principle is also known as Bayes decision rule [17] and it
incorporates knowledge about the prior class distribution p(y).
As a consequence, in cases of large prediction uncertainty
the MAP / Bayes rule tends to predict classes that appear
frequently in the training dataset when used in combination
with CNNs. However, classes of high interest might appear
less frequently. Regarding highly unbalanced datasets the
Maximum Likelihood (ML) decision rule oftentimes is a good
choice as it compensates for the weights of classes induced
by priors:

ŷz = dML(x)z := argmax
y∈Y

pz(x|y) = argmax
y∈Y

pz(y|x)

pz(y)
. (3)

Instead of choosing the class with the largest a-posteriori
probability pz(y|x), the ML rule chooses the class with the
largest conditional likelihood pz(x|y). It is optimal regarding
the risk function

Rinv (d) :=
1

|Z|
∑
z∈Z

∑
y∈Y

1{d(x)z 6=y}pz(x|y) ∀ x ∈ X (4)

and in particular Rinv (dML) ≤ Rinv (dBayes) is satisfied. The
ML rule corresponds to the Maximum Likelihood parameter
estimation in the sense that it aims at finding the distribution
that fits best the observation. In our use case, the ML rule
chooses the class that is most typical for a given pattern
observed in an image independently of any prior belief, such
as the frequency, about the semantic classes. Moreover, the
only difference between these two decision rules lies in the
adjustment by the priors pz(y) (see equation (3) and Bayes’
theorem [33]).

Analogously to [16], we approximate pz(y) in a position-
specific manner using the pixel-wise class frequencies of the
training set:

p̂z(y) =
1

|X |
∑
x∈X

1{yz(x)=y} ∀ y ∈ Y, z ∈ Z . (5)

Note that there is no training required for the ML rule. Having
calculated the priors (see equation (5)) from the dataset’s
ground truth once and offline, each ML mask is obtained via
one Hadamard product (see equation (3)), i.e., there is also no
additional CNN inference required.

After applying the ML rule, the amount of overlooked rare
class objects is reduced compared to the Bayes rule, but to the
detriment of overproducing false positives of the same class.
Hence, our ultimate goal is to discard as many additionally
produced false positive segments as possible while keeping
almost all additionally produced true positive segments (that
were overlooked by the Bayes rule).

III. PREDICTION ERROR META CLASSIFICATION

In order to decide which additional segments – predicted by
ML but not by Bayes – to discard in an automated fashion,
we train a binary classifier performing on top of the CNN for
semantic segmentation analogously to [30], [31]. Given the
conditional likelihood (softmax output adjusted with priors),
we estimate uncertainties per segment by aggregating different
pixel-wise dispersion measures, such as entropy

Ez(x) = − 1

log(|Y|)
∑
y∈Y

pz(x|y) log(pz(x|y)) ∀ z ∈ Z, (6)

probability margin

Mz(x) = 1− pz(x|ŷz) + max
y∈Y\{ŷz}

pz(x|y) ∀ z ∈ Z (7)

and variation ratio

Vz(x) = 1− pz(x|ŷz) ∀ z ∈ Z . (8)

As uncertainty is typically large at transitions from one class
to another (in pixel space, i.e., at transitions between different
predicted objects), we additionally treat these dispersion mea-
sures separately for each segment’s interior and boundary. The
generated uncertainty estimates serve as inputs for the auxil-
iary “meta” model which classifies into the classes {IoU = 0}
and {IoU > 0}. Since the classification is employed on
segment-level, the method is also termed MetaSeg.

We only add minor modifications to the approach for pre-
diction error meta classification, in the following abbreviated
as meta classification, as in [30]. For instance, instead of
computing logistic least absolute shrinkage and selection op-
erator (LASSO [34]) regression fits, we use gradient-boosting
trees (GB [35]). GB has proven to be a powerful classifier
on binary classification problems and structured data with
moderate dataset size which both match our problem setting.

In addition to the uncertainty measures, we introduce fur-
ther metrics indicating incorrect predictions. For localization
purposes we include the segment’s geometric center

Gh(k) =
1

|k|

|k|∑
i=1

hi , Gv(k) =
1

|k|

|k|∑
j=1

vj (9)

with k = {(hs, vs) ∈ Z, s = 1, . . . , |k|} ∈ K̂x being the
pixel coordinates of one segment (or connected component)
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Fig. 2. Graphical illustration of the relation between Bayes and ML prediction
segments for rare classes.

in the predicted segmentation mask, i.e., a set consisting of
neighboring pixel locations with the same predicted class. The
geometric center is the mean of all coordinates of a segment in
all directions, in our case in horizontal and vertical direction.

Another metric to be included makes use of a segment’s
vicinity to determine if an object prediction is misplaced. Let
knb = {(h′, v′) ∈ [h± 1]× [v± 1] ⊂ Z : (h′, v′) /∈ k, (h, v) ∈
k} be the neighborhood of k ∈ K̂x. Then

N(k|y) =
1

|kbd|
∑
z∈kbd

1{ŷz=y} ∀ y ∈ Y (10)

states the fraction of pixels predicted to belong to class y in
the neighborhood of k.

After computing the aggregated metrics, we obtain a struc-
tured dataset with a fixed number q ∈ N of features for each
single segment k ∈ K̂x. Given this dataset, we perform the
meta classification with an auxiliary binary classifier.

Note that if one would use the original MetaSeg method [30]
and reject false positives, there would only remain holes in
the segmentation masks as MetaSeg does not further process
the identified false positives. In contrast, our proposed method
presented in the next section IV utilizes two decision rules in
combination with the rejection step performed by MetaSeg
yielding a simple but powerful tool for producing a new
segmentation mask.

IV. COMBINING MAXIMUM LIKELIHOOD RULE AND
META CLASSIFICATION

After describing the key components of our method for
controlled false negative reduction in the preceding sections,
we now present our approach as combination of the Maximum
Likelihood decision rule and prediction error meta classifica-
tion for semantic segmentation in more detail. A graphical
illustration is provided in figure 1.

Applying either the Bayes or Maximum Likelihood decision
rule may lead to two different prediction masks. They may

differ because ML performs a prior adjustment assigning
higher weight to underrepresented classes than without this
adjustment, consequently increasing the sensitivity towards
predicting underrepresented classes. With respect to the most
underrepresented class c ∈ Y in an unbalanced semantic seg-
mentation dataset, it holds that all predicted Bayes segments
are inside ML segments [16], see figure 2 for a graphical
illustration.

Therefore, we assume that a non-empty intersection between
an ML segment and any Bayes segment, which are both
assigned to class c, indicates a confirmation for the presence
of a minority class object that was already detected by Bayes.
In this case, we say the decision rules agree. More crucial are
predicted ML segments that do not intersect with any Bayes
segment of the same class, i.e., the decision rules disagree, as
these indicate a CNN’s uncertain regions where rare instances
are potentially overlooked.

The observation whether the decision rules agree or not
builds the basis for segment selection for further processing.
Let k ∈ K̂x,ML be the pixel coordinates of one connected
component in the ML mask. Then, given input x,

Dx = {k ∈ K̂x,ML : dML(x)z 6= dBayes(x)z ∀ z ∈ k} (11)

denotes the set of segments for which Bayes and ML disagree.
Restricting Dx to a single minority class c ∈ Y , we obtain
the subset Dx|c = {kc ∈ Dx : dML(x)z = c ∀ z ∈ kc}.
The obtained subset contains the candidates we process with
MetaSeg. Let µk : [0, 1]|Z|×|Y| 7→ Rq be a vector-valued
function that returns a vector containing all generated input
metrics for MetaSeg restricted to segment k ∈ Dx|c. We derive
aggregated uncertainty metrics per segment

Uk := µk((p̂(x|y))y∈Y) ∀ k ∈ Dx|c (12)

that serve as input for the meta classifier, see also section III
and cf. [30], [31]. The classifier we use in our meta model
is the gradient-boosting tree algorithm (GB [35]) and it is
trained to discriminate between true positive (detected false
negative) and false positive segment predictions. Thus, we seek
a function f̂ : Rq 7→ {0, 1} that learns the mapping

f(Uk) =

{
1, if ∃ z ∈ k : dML(x)z = yz

0, else
(13)

with one connected component k ∈ Dx|c being considered
as true positive if there exists (at least) one pixel assigned
to the correct class label and as false positive otherwise. In
the latter case, we remove that segment from the ML mask
and replace it with the Bayes prediction. For the remaining
connected components k′ ∈ K̂x,ML\Dx|c, whether or not they
are minority class segments, we stick to the Bayes decision
rule as it is optimal with respect to the expected total number
of errors, see equation (2). Therefore, the final segmentation
output

d∗(x)z =

{
dML(x)z, if f̂(Uk) = 1 ∧ z ∈ k ∈ Dx|c
dBayes(x)z, else

(14)
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which results in the green points given in the figure. The diagonal gray lines
depict level sets along which the sum of both errors is constant.

combines Maximum Likelihood and Bayes decision rule. In
this way, compared to standard MAP principle, we sacrifice
little in overall performance but significantly improve perfor-
mance on segment recall for class c. We term our approach
MetaFusion.

V. NUMERICAL RESULTS FOR CITYSCAPES

Semantic segmentation is a crucial step in the process of
perceiving a vehicle’s environment for automated driving.
Therefore, we perform tests on the Cityscapes dataset [9]
which consists of 2,975 pixel-annotated street scene images of
resolution 2048×1024 pixels used for training and further 500
images for validation purposes. CNNs can be trained either
on 19 classes or 8 aggregated coarse categories. Our main
focus lies on avoiding non-detected humans (ideally without
producing any false positive predictions). As all images are
recorded in urban street scenes (thus naturally boosting the
occurrence of persons), classes like wall, fence or pole are as
rare as pedestrians in terms of pixel frequency in the dataset.
Therefore, estimating class priors via pixel-wise frequency
leads to a weighting not in line with human common sense
due to the possible preference of static objects over persons.
Therefore, we use category priors treating objects more su-
perficially (by aggregating all classes into the 8 predefined
categories), with pedestrians and rider aggregated to the class
human, then being significantly underrepresented compared to
all remaining categories.

We perform the Cityscapes experiments using DeeplabV3+
networks [36] with MobileNetV2 [37] and Xception65 [38]
backbones. We apply MetaFusion per predicted human seg-
ment as presented in section IV and evaluate the modified
predictions with respect to the human class in the Cityscapes
validation data. As meta classifier we employ GB with q = 56
inputs, 27 boosting stages, maximum depth of 3 per tree,
exponential loss and 5 features to consider when looking for
the best split. MetaFusion is 5-fold cross-validated. Numerical
results are listed in table I.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT DECISION RULES AND

METAFUSION FOR DEEPLABV3+ WITH MOBILENETV2 AND
XCEPTION65 BACKBONES ON CITYSCAPES. THE DECISION RULES ARE

OBTAINED ACCORDING TO EQUATION (16) BY DIFFERENTLY
INTERPOLATING BETWEEN PRIORS. THE PERFORMANCE IS MEASURED
USING THE MEAN INTERSECTION OVER UNION (mIoU ), NUMBER OF

FALSE POSITIVE (FP ) / FALSE NEGATIVE (FN ) HUMAN SEGMENTS AND
THE TRADE-OFF SLOPE ∆ (SEE EQUATION (17)).

Priors interpol. Adjusted Decision Rule MetaFusion
degree α mIoU FP FN ∆ mIoU FP FN ∆

DeeplabV3+ MobileNetV2 on Cityscapes validation set

0.000 (Bayes) 0.684 865 839 - 0.684 865 839 -

0.900 0.675 1644 631 3.735 0.683 1167 720 2.538
0.950 0.668 1988 571 4.190 0.682 1169 670 1.799
0.975 0.661 2352 533 4.860 0.681 1191 648 1.701
0.990 0.653 2827 496 5.720 0.680 1247 611 1.676
0.995 0.649 3155 485 6.469 0.680 1329 586 1.834

1.000 (ML) 0.600 4885 476 11.074 0.680 1606 553 2.590

DeeplabV3+ Xception on Cityscapes validation set

0.000 (Bayes) 0.753 774 679 - 0.753 774 679 -

0.900 0.746 1314 530 3.624 0.752 1055 614 4.323
0.950 0.742 1579 487 4.193 0.752 1079 583 3.177
0.975 0.737 1783 458 4.566 0.751 1118 571 3.185
0.990 0.732 2068 433 5.260 0.751 1103 549 2.531
0.995 0.731 2219 425 5.689 0.750 1154 532 2.585

1.000 (ML) 0.705 3003 421 8.640 0.750 1272 508 2.912

As a baseline we interpolate the priors between the Bayes
and Maximum Likelihood decision rules in order to understand
how they translate into each other, i.e., we use the priors

pz,α(y) = (1− α)1 + αpz(y) ∀ y ∈ Y, z ∈ Z, (15)

with α ∈ [0, 1], resulting in the adjusted decision rule

dadj (x, α)z := argmax
y∈Y

pz(y|x)

pz,α(y)
(16)

with dadj (x, 0) = dBayes(x) and dadj (x, 1) = dML(x). By
varying the coefficient α we obtain the blue line in figure 3 that
may serve as an intuitive approach to balance false negatives
(FNs) and false positives (FPs). For each of the points given
on the blue curve we apply MetaFusion (green line). Thus,
many of the overproduced FPs are removed, however, at the
same time we also have to sacrifice some of the detected FNs.
In other words, we sacrifice only a small number of the newly
found true positives which MetaFusion incorrectly discards.

Although there exist different techniques from traditional
machine learning for handling class imbalance, they cannot
be applied offhand in semantic segmentation. This includes
sampling-based methods as the class imbalance is often in-
herent in street scene images. Algorithm-based techniques are
computationally expensive since good reweighting factors are
not known a-priori. Thus, we choose probability thresholding
as the only baseline.

The main evaluation metrics that serve for our evaluation are
the numbers of false positives (FP ) and false negatives (FN )
with respect to the minority class “human”. Another measure
for MetaFusion is the ratio between prediction errors: For any



decision rule d : [0, 1]|Y| × R 7→ Y , such that FN(dBayes)−
FN(d) 6= 0, the slope

∆(d) =
FP (d)− FP (dBayes)

FN(dBayes)− FN(d)
(17)

describes how many additional FPs we have to accept for
removing a single FN compared to the Bayes decision rule.
The smaller ∆, the more favorable the trade-off between the
two error rates. In fact, ∆ < 1 indicates that for the considered
minority class the total number of errors is decreased by
applying d compared to dBayes (whereas it may increase for
the other classes).

We interpolate between Bayes and ML priors according
to equation (15) for every pixel location z ∈ Z . We
observe that an interpolation degree of α < 0.9 for the
adjusted decision rules (see equation (16)) leads to a lack
of meta training data as their predictions do not differ sub-
stantially. Moreover, we choose unevenly spaced steps α ∈
{0.9, 0.95, 0.975, 0.99, 0.995, 1} due to a drastic increase in
error rates for interpolation degrees close to 1.

For MobileNetV2, see also figure 3, we observe that the
number of FPs increases from 865 up to 4885 when applying
ML instead of Bayes while the number of FNs decreases from
839 down to 476. This results in a large ∆ = 11.07 expressing
that roughly 11 FPs are paid for removing a single FN. Clearly,
there is an overproduction of predicted human segments that
we can keep under control using MetaFusion.

By applying MetaFusion, the number of FPs is reduced
to a third of ML’s FPs while maintaining more than two
thirds (78.79%) of the additional true positives. This results
in ∆ = 2.59 which is a significant decrease compared to
plain ML without MetaFusion. With respect to the overall per-
formance, measured by mean IoU, MetaFusion sacrifices 0.4
percent points and ML 8.4 percent points. In our experiments
we observe that our approach works better the more segments
are available for which the decision rules disagree. Therefore,
the performance gain with respect to the total number of errors
is most significant for α = 1.0. For decreasing interpolation
degrees, we observe a successive reduction of the total number
of errors for the adjusted decision rules. The class weightings’
adjustment does not lead to a better performance than Bayes
with respect to the absolute number of errors. However, when
avoiding FNs is considered to be more important than FPs,
our method proposes alternative decision rules that are more
attractive than plain decision rules.

For every investigated α MetaFusion is superior to ML
regarding the failure trade-off ∆, producing 1.68 additional
FPs for removing one single FN as its best performance.
In addition, we can conclude that our approach outperforms
probability thresholding with respect to the error rates on
human segments.

For the stronger DeeplabV3+ model with Xception65 net-
work backbone, we observe similar effects in general. Com-
pared to MobileNetV2, MetaFusion’s performance gain over
adjusted decision rules is not as great. This is primarily
due to the higher confidence scores in the softmax output
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Fig. 4. Feature importance scores of the gradient-boosting classifier for
MobileNetV2 applied to all disjoint ML and Bayes human segments. The
score is averaged over all random cross-validation splits and only the ten
features with the highest score are stated. In total we used q = 56 metrics as
meta model input. N and G are defined in section III. E and M denote the
segment-wise averaged entropy and probability margin, respectively, with bd
indicating the restriction on the segment’s boundary.

of the underlying CNN. They prevent the adjusted decision
rules from producing segments for which the decision rules
disagree. Therefore, the training set size for the meta classifier
is rather small even resulting in a worse ∆ for MetaFusion than
for the adjusted decision rule when α = 0.90. Nevertheless,
the latter does not hold for the remaining investigated inter-
polation degrees. Indeed, across the remaining investigated α
MetaFusion accepts on average 2.8 FPs for removing a single
FN which is less than half of the average ∆ (5.7 FPs) for the
adjusted decision rules.

In order to find out which of the constructed metrics
contribute most to meta classification performance, we analyze
our trained GB with respect to feature importance. The latter
is a measure indicating the relative importance of each feature
variable in a GB model. In a decision tree the importance is
computed via

In(t) = n(t)Q(t)−nleft(t)Qleft(t)−nright(t)Qright(t) (18)

with Q(t) the Gini impurity [35] and n(t) the weighted
number of samples in node t ∈ T (the weighting corresponds
to the portion of all samples reaching node t). Moreover,
by left and right we denote the respective child nodes. The
importance for f̂ of feature / uncertainty metric m ∈ [0, 1] is
then computed as

I(m) =
∑
t∈T

χ(t|m)In(t)/
∑
t∈T

In(t) (19)

with

χ(t|m) =

{
1, if node t splits on feature m
0, else

. (20)

The ten features of highest importance (in experiments
with MobileNetV2) are reported in figure 4. By a large
margin, a segment’s neighborhood including class id 18, which
corresponds to bicycles, has the strongest effect on GB. This is
plausible since a bicycle segment adjacent to a human segment
can be viewed as an indicator that this human segment is
indeed present, i.e., a true positive. Having less than half the



(i) Bayes prediction (ii) Maximum Likelihood prediction (iii) MetaFusion prediction

(iv) Original raw input image (v) Ground truth segmentation mask (vi) Image zoom into region of interest

Fig. 5. Example of generated segmentation masks with MobileNetV2. In the top row: prediction masks using Bayes (i), ML (ii) and MetaFusion (iii). In the
bottom row: raw input image (iv), corresponding annotated ground truth mask (v) and zoomed views into the region of interest marked in the latter images
(vi). By comparing the prediction masks, we observe a couple of person segments (red color) for which the decision rules disagree and which are correctly
identified as false positive according to the ground truth by using MetaSeg. In the end, with MetaFusion we obtain a segmentation mask similar at large to
the standard Bayes mask but with some additionally detected person instances (in numbers 3) that are rather small and barely visible in the original image.

importance score, the geometric center still has a relatively
high impact on GB. We notice that ML produces many
(false positive) segments close to the image borders. This is
a consequence of applying pixel-wise ML which GB takes
into account. The dispersion measures entropy and probability
margin are considered as important features as well expressing
the CNN’s uncertainty about its prediction. In [30], it already
has been shown that these two metrics are well-correlated
with the segment-wise IoU. GB also uses these correlations to
perform the meta classification. In contrast to the findings in
[30], dispersion measures at segment boundaries have greater
impact than the dispersion of the interior. This high uncertainty
at the boundaries can be interpreted as disturbances for class
predictions in a segment’s vicinity and may indicate that
the investigated segment is a false positive. Moreover, the
remaining features in the top ten of highest importance are
neighborhood statistics for the classes (in descending order)
motorcycle, car, building and sidewalk.

VI. CONCLUSION

In this work, we presented a novel pure post-processing
method for semantic segmentation that further processes only
the softmax output of any given model. As minority classes are
often of highest interest in many real-world applications, the
non-detection of their instances might lead to fatal situations
and therefore must be treated carefully. In particular, the class
person is one such minority class in street scene datasets.
We compensate unbalanced class distributions by applying the
Maximum Likelihood decision rule that detects a significantly
larger number of humans, but also causes an overproduction of
false positive indications of the same class. With our method,

we are able to detect false positive segment predictions in
the ML mask in an automated fashion. These detected false
positives are replaced by the Bayes mask. Both, the Bayes
and ML mask are obtained from the same inference. Also, the
final decision step is not performed by weighting, but by using
uncertainty, geometry and location features of the additional
minority class segments proposed by ML and passing them
through a (in comparison to deep learning models lightweight)
gradient-boosting classifier. In our tests with the Cityscapes
dataset, we significantly reduce the number of false positives
induced by the modification of the decision rule. At the same
time, we sacrifice only a small number of newly found true
positives which also results only in a minor overall perfor-
mance loss compared to the standard Bayes decision rule. In
fact, our method, which we term MetaFusion, clearly outper-
forms decision rules with different class weightings obtained
by interpolating between Bayes and ML rule, i.e., MetaFusion
outperforms pure probability thresholding with respect to both
error rates, false positive and false negative, of class human.
This result holds for the investigated DeeplabV3+ models with
MobileNetV2 and Xception65 backbones. The performance
gain is more substantial the greater the difference between
the Bayes and ML mask. MetaFusion can be viewed as a
general concept for trading improved false positive detection
for additional performance on rare classes.

For future work we plan to improve our meta classification
approach with further heatmaps, metrics as well as component
sensitivity to time dynamics. Our approach might also be
suitable to serve for query strategies in active learning. Our
source code for reproducing experiments is publicly available
on GitHub, see https://github.com/robin-chan/MetaFusion.

https://github.com/robin-chan/MetaFusion
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