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Abstract— Humans always engage multiple modalities when 
performing tasks, such as eye activity, speech and head movement, 
which contain rich information indicative of task load that can 
help understand and predict human psychological state and 
behavior. In recent research into multimodal signal processing, 
the ideas of sequence- and coordination-based event features have 
been proposed, which explicitly utilize the interaction information 
among different modalities. In this paper, we propose event 
intensity and event duration-based features, which capture the 
extent and duration of onset events that denote major changes in 
behavior signal. These features are combined with sequence- and 
coordination-based event features to achieve state-of-the-art 
performance in assessing task load levels and load types. In 
experimental work, we collected eye activity, speech and head 
movement data from 24 participants during cognitive, perceptual, 
physical and communication tasks. Results suggest that by fusing 
these four compact, interpretable event-based features, strong 
accuracy can be achieved: 84% for two load level classification, 
89% for four load type classification and 76% for 8-class 
classification, outperforming conventional statistical features and 
deep neural network self-learned features by up to 9% and 25% 
respectively. These features do not need to be selected during 
training and can generalize well for different participants and 
different task types.  
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I. INTRODUCTION  

Task load estimation plays an important role in 
understanding user mental state and behaviours. When we are 
performing daily tasks, e.g. thinking, seeking, speaking, 
moving, our cognitive system is continuously exposed to 
different load levels and types. Its capacity determines our task 
performance and behaviors. While this mental state may be 
obvious for the person who undertakes the tasks, it is difficult 
for others to estimate since it is very implicit. This motivates 
research into using physiological and behavioral signals to 
estimate task load, since understanding mental state can greatly 
facilitate cooperation between people or between users and 
interactive systems [1], and help design novel interfaces to 
enhance and mediate human computer interaction [2]. 

Efforts in physiological and behavioral computing have 
often focused on three research directions, aiming to improve 
psychophysiological state estimation and proliferate 
applications in different contexts. The first is the measurement 
mode: mobile or non-mobile. Experiments in non-mobile 
settings often include e.g. EEG, ECG, GSR, respiration [4-6], 

where body movements are 
restricted to a certain degree to avoid 
significant interference from 
movement. Other measures, such as 
pupillary response, speech, body 
movement [4,7-9], which can be 
acquired from mobile eye trackers, 
microphones, and Inertial 
Measurement Units (IMUs) can be 
easily used in mobile contexts. An 
example of a mobile device is 
shown in Fig. 1. They are suitable 
for longitudinal studies and daily 
usage. However, environmental 
noise may be significant, and 
mining useful information is 
challenging. Other research efforts 
were devoted to understanding and 
extracting effective features from 
different modalities, which not only 
contain psychological meaning but 
also can sufficiently discriminate the psychophysiological state 
of interest from others [5,8,9]. A well-known example is the 
mean pupil diameter during tasks for cognitive load estimation 
[10]. Employing different learning approaches is the third 
research direction. Features from a single modality or multiple 
modalities have been explored in different classification 
approaches or fused at different stages in the machine learning 
process [7,8,11,12] in order to improve mental state estimation. 

In this paper, we focus on processing multiple modalities 
which can be acquired in mobile settings, including eye activity, 
speech and head movement, for task load type and level 
estimation based on previous work. We extend recent research 
into features based on change events [13] to explore a further 
two event-based features, fully utilizing the interaction 
information among multiple modalities to improve task load 
estimation greatly. We also investigate the estimation 
performance of using event-based features and features learnt 
from deep learning networks. This addresses the open question 
of whether deep learning networks can successfully self-learn 
useful information for task load estimation from physiological 
and behavioral signals, which can help design deep learning 
network architectures specifically for physiological and 
behavioral computing. 

Fig. 1. A wearable eyewear
system (Pupil Labs [3] is the
main frame) integrating a
microphone and an IMU is
promising to collect eye
activity, speech and head
movement for mobile daily
usage.  

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



II. BACKGROUND AND RELATED WORK  

A. Task Load Level and Type Recognition  

Task load is generally believed to be produced due to the 
limited capacity of working memory in the cognitive system 
[16-18]. When temporal visual, auditory and other information 
are present, the central executive controls working memory and 
long-term memory to receive, store, organize and retrieve theses 
information. The bottleneck in working memory results in this 
processing being unable to occur simultaneously, causing a load 
on the cognitive system. This load in turn changes our 
physiology and behaviors. Performing multiple tasks at the same 
time [17] or performing a single task where information 
elements are highly interactive [18] can quickly deplete the 
limited resources, hence producing high task load levels. 

Most studies using physiological and behavioral signals for 
task load estimation only considered load level recognition 
within a particular task. For example, Zhang et al. [9] employed 
eye gaze, EEG, and peripheral physiology (GSR, EMG etc.) to 
classify two load levels during virtual driving tasks, where load 
was induced by different speed, responsiveness, and weather 
conditions, and achieved the best accuracy around 84%. 
Fridman et al. [11] input eye images recorded in real world 
driving tasks to a deep leaning neural network, and achieved 
86% accuracy discriminating 0-, 1- and 2-back working memory 
tasks during driving. In a recent study [19], it was found that 
even with the same features, the estimation accuracies of task 
load levels may significantly vary depending on task load type. 
Recognizing the load level of perceptual tasks and 
communication tasks (above 90% accuracy) was easier than that 
of cognitive tasks and physical tasks (around 70% accuracy). 
Few studies [13,19] took different task types into account and 
trained task load models using different task load types. 
Consequences of this may include low estimation performance 
or ‘out-of-vocabulary’ problems for continuous and longitudinal 
task load estimation because in the research laboratory task load 
models are usually built based on a small set of short-time 
prototypical tasks, while real-world tasks are continuously 
changing and may comprise previously unseen variants. 

In recent work, Epps et al. [20] suggested a four-dimensional 
task load framework to describe load assessment associated with 
general load types. In this framework, tasks can be analyzed by 
their attributes in terms of four load types: cognitive, perceptual, 

physical, and communication load, based on the Berliner task 
taxonomy [21], and their intensity (load level). This kind of 
dimensional intensity-based representation has already been 
used extensively to represent emotions using arousal and 
valence [22], and by the NASA-TLX task load index [23] where 
multiple aspects from temporal demand, physical demand, 
mental demand are self-rated to fully assess task load. However, 
in terms of task load modeling for load level estimation, few 
studies [19] considered different task load types and fully 
assessed load levels across different task types. 

B. Multiple Modality Processing 

Physiological and behavioral signals acquired from different 
modalities are often represented by numerical feature values, 
which contain both useful information and noise. Those signal 
components which represent fast and non-continuous change at 
each task instant or during a task period are often filtered out 
before feature extraction [15]. Fig. 2(a)(b) shows an example of 
such a smoothing effect. This denoising process requires 
knowledge of the noise and/or physiological/behavioral signal 
characteristics for meaningful (rather than heuristic) smoothing 
filter parameter setting. Statistical features in the time or 
frequency domain [5,7-9], which take every task instant value 
into account, are often hand crafted as inputs to task load 
models. Even for some signals which are discrete in nature, e.g. 
blink, statistical features have been extracted during a time 
window, i.e., blink rate or blink duration per second [5, 9] to 
estimate task load. 

As opposed to utilizing continuous signals to extract 
features, a recent study [13] converted continuous physiological 
and behavioral signals to discrete events, following the form of 
those behavior events to extract effective features. These 
discrete events were generated based on the ‘atomic’ event 
detection algorithm [13], which detects increase, decrease, and 
central movement events. The corresponding event intensity 
was measured by the dispersion from a central value, as 
illustrated in Fig 3(c). The physiological rationale behind the 
three atomic events is that they indicate a balance change in two 
antagonist systems: when the signal is in a state of increase, it 
means efforts from one system have been made to overcome the 
resistance from the other, while events in the state of decrease 
indicate no sustained effort and/or the other autonomic system 
taking over to regulate the function. 

 
                                        (a)                                                                            (b)                                                                            (c) 

Fig. 2. An illustrative example showing (a) the raw pupil size signal and (b) the results of wavelet decomposition denoised [14,15] and (c) detection of increase, 
decrease and central events and their corresponding intensities using the atomic event detection algorithm [13]. 



This approach is different from another common discrete 
encoding paradigm that uses k-means to cluster low-level 
descriptors into k clusters to represent them by a symbolic 
sequence of cluster indices [24], which cannot be easily 
interpreted. It is also different to event modeling based on task 
beginning and end timing [25]. The atomic event detection 
approach in principle allows partial reconstruction of a 
numerical representation from the events and their 
corresponding intensities, as shown in Fig 3(c): the events 
compactly preserve the general shape and remove all low-level 
variations between events, which is similar in principle to the 
aim of employing signal processing techniques such as wavelet 
decomposition, as shown in Fig. 2(b). 

To explore these atomic events for task load estimation, one 
study [19] employed an n-gram bag-of-words behavioral model, 
which utilized the sequence events from different modalities to 
recognize task load levels. Specifically, the onset of blink, 
speech, saccade, pupil size increase and head angular velocity 
increase events were selected along time. Frequency of event 
sequences was used as a feature to input to an SVM classifier 
after feature selection in training. As opposed to an event 
sequence, another study [26] examined whether event 
coordination, i.e. the number of events occurring 
simultaneously, changes in different task load levels. Based on 
multimodal coordination dynamics studies (e.g. [27]), it was 
hypothesized that when task load was high, behavior events are 
more likely to co-occur. The statistical tests in [26] confirmed 
this hypothesis. 

Regarding multiple modality processing in task load 
modelling, the aim has often been to find the best combinations 
of different features utilizing complementary information 
between multiple modalities [5,7-9]. By contrast, event-based 
features utilize the interaction among multiple modalities in 
terms of sequence and coordination and have been rarely studied 
for fusion in task load modeling. However, apart from 

employing event sequence features for task load estimation 
using machine learning in [13], task load estimation 
performance using coordinated event features is unknown yet. 

C. Deep Learning for Mental State Estimation 

Differently from hand-crafted features, which often rely on 
psychophysiological knowledge, deep learning models can 
automatically learn useful features, relying on their powerful 
learning ability and abundant information in big data. Current 
end-to-end deep learning has been applied to speech for emotion 
recognition [12]. The reported performance was better than 
using hand-crafted acoustic features. In their study [12], a raw 
6-s long speech waveform sampled at 16kHz was directly input 
to a convolutional recurrent network with two convolutional 
layers and two LSTM layers. The two convolutional layers were 
expected to automatically learn effective features to replace 
conventionally engineered features. A visualization of gate 
activations demonstrated that the automatically learned features 
were highly correlated with the prosodic features that have 
previously been used to predict arousal. 

Another end-to-end deep learning approach was applied to 
eye images for cognitive load recognition among n-back tasks 
during a driving scenario [11]. In this work, 90 temporally 
ordered raw eye images of size 64 × 64 pixels, cropped after face 
and eye recognition, were input to a 3D-CNN architecture and 
achieved 86% accuracy for three classes, which outperformed 
the accuracy using explicitly extracted pupil positions as input 
features to HMM models by around 8%. 

With physiological and behavioral signals, effective hand-
crafted features are usually always interpretable and generalize 
well based on psychophysiology studies. This generalization 
could be consistent with the deep learned features through end-
to-end deep neural networks which require large amounts of data 
to learn. However, to guide the neural network to learn more 
advanced and effective features to improve task load estimation, 

(a)                                                                                                              (b) 

Fig. 3. An illustrative example showing (a) raw event signals (Lt) from five modalities, each extracted using the algorithms in [13] to compose onset events in
sequence at the bottom and (b) sequence-based features, coordination-based features, duration-based features, and intensity-based features. To obtain the
sequence-based features, 2-gram method is applied to the onset events during a task to form terms, each composed of 2 events. For all the tasks in training, each
term is encoded as 1 or 0 to indicate whether the term exists in the task or not, then the count of each term is calculated as a 2-gram sequence feature and the
feature dimension will depend on the training data. For coordination features, each event is firstly encoded as 1 or 0 to indicate whether this event is composed
of at least 2 events coordinated or just one single event, then the count of the occurrence and non-occurrence of coordination is used as the feature. The proposed
duration and intensity features are described by equations (4) and (6). 



we need firstly to understand how neural networks perform with 
deep learned features compared with effective hand crafted 
features, then we may develop more effective deep learning 
network architectures for psychophysiological state estimation. 

III. METHODS 

The aim of our study is to fully utilize event-based features 
to improve task load estimation where different task load types 
are considered. We collected a dataset containing four types of 
task load (elaborated in Section IIIB) based on the four-
dimensional task load framework [20]. Each load type contains 
two task load levels (low and high) for simplicity. Analysis was 
conducted under three conditions: (i) task load level recognition 
regardless of load type (2-class); (ii) task load type recognition 
(4-class) regardless of load level; (iii) task load level and type 
recognition (8-class) to fully understand the discriminability of 
the event-based features. The atomic events were extracted 
following the approach described in [13]. Sequence-based event 
features were the same as those in [19]. Coordination-based 
event features were also extracted according to [26]. New event-
based features based on event duration and intensity were 
proposed and fused with the sequence and coordinated event 
features to fully evaluate the effectiveness of the event-based 
methods. End-to-end deep learning systems using raw events 
obtained from eye, speech and head movement data were used 
as baselines. 

A. Proposed Event Duration and Intensity Features to 
Improve Task Load Estimation 

Differently from previous work where only duration of blink 
and saccade were used (e.g. [14]), we also calculated the time 
elapsed from onset to offset for pupil increase and head velocity 
increase events. As shown in Fig. 2(c), a continuous signal 
during a task (St) can be segmented into an event signal Lt at time 
t, which includes increase, decrease and central events, 
corresponding to 1, -1 and 0 respectively in Fig. 3(a). According 
to the algorithm in [13], the central events were firstly obtained. ܮ௧ᇱ = ൜ܿ݁݊,																		|(ݐ)ݒ| < 	otherwise												,݊݁ܿ_݊݊		௧ݒ             (1) 

where ܮ௧ᇱ 	 is the label of each t. Then the first derivative was 
calculated to decide the increasing (incr) and decreasing (decr) 
parts. 

௧ܮ = ۔ە
ۓ ܿ݁݊,																																when	ܮ௧ᇱ = ,ݎܿ݊݅݊݁ܿ ௗ௩(௧)ௗ௧ > 0				when	ܮ௧ᇱ = 			,ݎܿ݁݀݊݁ܿ_݊݊ ௗ௩(௧)ௗ௧ ≤ 0			when	ܮ௧ᇱ =  (2)            	݊݁ܿ_݊݊

Therefore, we can easily obtain the timestamps of the onset and 
offset of the nth increase events during a task, t1n and t2n. The 
signal of duration of increase event at time t is ݎݑܦ௧ = ቄݐଶ − ݐ														ଵݐ = ݁ݏ݅ݓݎℎ݁ݐ																					ଵ0ݐ              (3) 

The event duration features per task, Dave and Dstd,  are the 
average and standard deviation of the non-zero durations across 
a task. That is ܦ௩ = 	 1ܰ  ௧ேୀଵݎݑܦ ݐ	ℎ݁݊ݓ			 =  ଵݐ

௦௧ௗܦ = 	ටଵே ∑ ௧ݎݑܦ) − ேୀଵ			௩)ଶܦ ݐ		ℎ݁݊ݓ =  ଵ (4)ݐ

where N is the number of onset events t1n. These features were 
extracted from each of the five modalities. However, most of the 
saccade durations were one frame, therefore only the four other 
modality durations were used, to form four dimensions for each 
duration feature.  

The intensity of increase event at time t was ݐ݊ܫ௧ = ൜݉ܽݔ(ܵ௧భஸ௧ஸ௧మ)														ݐ = ݁ݏ݅ݓݎℎ݁ݐ																																					ଵ0ݐ                 (5) 

Similarly, the event intensity features per task were Iave and 
Istd using ܫ௩ = 	 1ܰ  ௧ேୀଵݐ݊ܫ ݐ	ℎ݁݊ݓ			 =  ଵݐ

௦௧ௗܫ = 	ටଵே ∑ ௧ݐ݊ܫ) − ேୀଵ			௩)ଶܫ ݐ		ℎ݁݊ݓ =  ଵ    (6)ݐ

These features were extracted from four modalities: saccade, 
pupil size, head movement, and speech signals while blink 
intensity (eyelid opening) was unavailable from current data. 
Therefore, four modality intensities were used to form four 
dimensions for each intensity feature. 

B. Task Load Data Set 

We collected one-hour eye activity, speech and head 
movement data from each of the twenty-four volunteer 
participants (14 males, 10 females, aged 18-25). They were 
asked to wear a wearable system and sit at a desk but were free 
to move any part of their body and to speak while completing 
the four types of tasks (approved by UNSW Human Research 
Ethics Advisory). The wearable system included a lightweight 
glasses frame on which a modified IR webcam was pointing 
towards the eye. The webcam recorded video (30 fps) and audio 
data (sampling rate: 44.1k) and was connected to a laptop with 
a USB cable. An IMU was attached to the participant’s head by 
a head strap (in a product the IMU would be embedded in the 
glasses frame) and connected to the laptop with a USB cable. 
The IMU prototype consisted of an inertial measurement unit 
(MPU 9150) and output three-axis acceleration, angular 
velocity, and magnetic field strength at a rate of around 20 Hz. 
A ‘scene view’ camera was used to record all activities during 
the experiment for reference during annotation. 

Four types of tasks were designed to induce four types of 
task load, namely cognitive load, perceptual load, physical load 
and communication load, representing some of our daily 
activities. These tasks were (i) solving a set of addition problems 
presented visually and giving the answers verbally, (ii) 
searching for given targets from among pictures full of 
distractors, (iii) forearm lifting of two dumbbells with different 
weights, and (iv) holding conversations with the experimenter 
to complete a very simple conversation or an object guessing 
game. The two load levels were manipulated by changing the 
difficulty of the addition problems, the size and number of the 
distractors, the weight of the dumbbells, and requirements for 
only yes/no answers (low load) or asking questions (high load), 
respectively. Task durations varied in each individual task. 



At the beginning of data recording, participants clapped their 
hands and nodded their head at the same time in order to 
synchronize all sensor signals in later processing. Next, they 
completed each level of the four types of tasks, with full 
explanations provided by the experimenter next to them, 
followed by subjective ratings (0-7) of task difficulty at the end 
of each trial to check the validity of the induced level. After this, 
tasks in the four load types and two load levels were 
continuously presented in a counterbalanced order and 
completed by participants without breaks. At the end of a few 
selected tasks, subjective ratings (0-7) were solicited again and 
participants provided verbal answers. Following the completion 
of all tasks, participants were thanked and given a voucher. 

In total, each participant completed 44 tasks. Among them, 
22 tasks had low load level and 22 tasks had high load level. 
Irrespective of load levels, there were 14, 10, 10, and 10 tasks 
corresponding to cognitive, perceptual, physical and 
communication load types respectively. Considering both load 
type and load level, there were 7 tasks in the category of low 
cognitive load, 7 in high cognitive load, and 5 tasks in each of 
the remaining 6 categories. The induced load level was treated 
as the ground truth, and this assumption was verified using 
participants’ subjective self-ratings of the task difficulties. The 
timestamps of each task were automatically recorded.  

C. Signal Processing 

The aim of the signal processing procedure was to obtain 
behavior events from five modalities during a task, including 
three natural events: blink, saccade, and speech onset, and two 
events converted from continuous physiological and behavioral 
signals: pupil size increase event and head velocity increase 
event. Then event-based features were extracted. The processing 
of these eye videos, speech waveforms and head movement data 
to obtain pupillary response, pupil center positions and blink, 
acoustic features and resampled 30 Hz head acceleration, 
angular velocity, and magnetic signals can be found in 
[28,29,13] respectively. Saccade and fixation were then 
separated from pupil center positions using dispersion-based 
algorithms [30] (1˚ of visual angle for at least 200 ms). Speech 
onset was obtained by thresholding voicing probability (one of 
the acoustic features) at 0.70. The increase, decrease and central 
movement events for pupil size and head velocity were obtained 
using the atomic head movement segmentation algorithm [13] 
as shown in equation (1-2), where the threshold for central 
movement was 3˚/s for head velocity and was mean pupil size 
during the first 0.5 sec of a task for pupil size. An illustrative 
example of these discrete event signals is shown in Fig. 3(a). 

Four types of event-based features were extracted: sequence-
event based features [19] where 2-gram was chosen, 
coordinated-event based features [26], event duration-based 
features, and the proposed event intensity-based features as 
described in equations (4) and (6). Fig. 3(b) illustrates the feature 
formulation and dimensions. It is worth mentioning that only the 
onset events were used as we assumed that they represent the 
occurrence of effort. Therefore, only the duration and intensity 
of the onset events were calculated. They can be interpreted as 
exerting and maintaining effort for each behavior, while the 
sequence- and coordinated-event features express the changes in 
multiple modality interaction in different task load contexts. 

D. Multimodal Convolutional Recurrent Network 
Architecture 

To recognize task load levels and load types, we input these 
hand-crafted event-based features into a deep neural network 
backend to learn task load models and evaluate the performance. 
Meanwhile, pseudo end-to-end deep learning was conducted 
where raw event signals from five modalities (shown in Fig. 
3(a)), their intensity and duration of each event along time 
(equation (4) and (6)), and sequenced onset events (Fig. 3(a) 
bottom) were experimented with as inputs respectively. 
Effective features were expected to be automatically learned and 
passed to the same deep backend as the hand-crafted event-
based features, and the accuracy was used as a baseline. The two 
multimodal deep neural network architectures are shown in Fig. 
4(a) and (c), while for sequenced onset events, they were treated 
as a document and pre-processed as text data. They were 
encoded before being passed to the LSTM deep backend with a 
word embedding layer as shown in Fig. 4(b).   

A long short-term memory (LSTM) network was chosen as 
the backend because physiological and behavioral signals are 
temporal data in nature, and the events extracted were also in 
sequence. The event-based features utilized the temporal 
information between multiple modalities to represent task load. 
We used the same LSTM deep backend in order to compare the 
effectiveness of the hand-crafted event-based features, 
conventional statistical features, and the automatically learned 
deep features for task load estimation. For the pseudo end-to-
end deep learning baseline, we used the same convolutional 
recurrent network topology as the end-to-end speech emotion 
recognition in [12]. Comparing with the end-to-end cognitive 
load estimation in [11], we used one level of CNN rather than 
three levels and used CNN-LSTM rather than 3D-CNN. 

E. Experiment 

We firstly analyzed the subjective ratings of low and high 
load levels for each task type across all participants in order to 
show the validity of task load levels. Wilcoxon paired sign tests 
were conducted to confirm whether the two load levels were 
significantly different. 

To estimate task load levels (2-class), task load types (4-
class), and task load type and level (8-class), we used a leave-
one-participant-out scheme. Therefore, 1012 tasks (23 
(participants) × 44(tasks)) were used for training and 44 tasks 
for testing. To train the models, we set the number of epochs to 
be 30, batch size to be 32, and dropout rate to be 0.5 according 
to trial and error on one participant’s data subset. The number of 
hidden neurons was 128 and 32 for LSTM1 and LSTM2 
respectively. Each fully connected layer’s number of hidden 
neurons was equal to the number of classes, i.e. 2, 4 or 8.   

The four types of event-based features were extracted from 
each task. We firstly input them to the LSTM deep backend (Fig. 
4(a)) individually to investigate their discriminability for task 
load level and type estimation. Then we fused them by 
concatenating all features to form a 43-dimensional feature 
vector (25 sequence features, 2 coordination features, 8 duration 
features, and 8 intensity features) and input them to the same 
LSTM deep backend for the three classification tasks. 



Six baselines were employed. The first one adopted 157 
conventional statistical features, which have often been seen for 
task load estimation, including mean and standard deviation of 
pupil size, blink, fixation and saccade features, head 
acceleration, angular velocity, magnetism values, in three axes, 
prosodic features, mel frequency cepstral coefficients (MFCC) 
features, and perceptual linear prediction (PLP) features to 
represent each task [19]. The best 25 features were selected 
during training using the neighborhood component analysis 
(NCA) feature selection method. These hand-crafted features 
were passed to the LSTM deep backend to compare with the 
proposed four types of event-based features.  

The second baseline comprised the onset events along time 
in the form of words as shown the bottom line in Fig. 3(a). The 
performance was compared with that using the selected 25-
dimensional 2-gram features since the sequence-based features 
were extracted from the same onset events.   

The third baseline involved raw event signals from the five 
modalities shown in Fig. 3(a), containing all information about 
physiological and behavioral change, including the onset and 
offset of blink, saccade, and speech, pupil size and head velocity 
increase, decrease, as well as the duration of each event. In the 
fourth baseline, the intensity of each saccade, pupil size change 
and head velocity change event was employed, since they were 
not included in the raw event signals. The fifth baseline 
contained explicit event duration information, since this 
information is only implicit in the raw event signals from the 
five modalities. The last baseline concatenated all signals (43-
D) above to provide complete information about eye activity, 
speech and head movement. Useful information is expected to 
be learned by the convolutional neural network to achieve better 
performance than the hand-crafted features. Sequence padding 

to make each task sequence the same length was used since the 
task duration varied.  

All performances were compared using the average 
accuracies across 24 participants with a 95% confidence 
interval, since the amount of data in each class was nearly 
balanced. 

IV. RESULTS 

Fig. 5(a) shows the subjective rating of load level in each 
load type across 24 participants after they completed the first 
task of each category. Nonparametric Wilcoxon paired sign tests 
(two-sided) confirmed that in each task type, the perceived load 
level during the designed high load tasks was significantly 
higher than that in the designed low load tasks (Z = -4.3, -4.3, -
3.5, -4.2 respectively, p < 0.001). Fig. 5(b) presents the 
subjective rating at the end of selected tasks. Wilcoxon paired 
sign tests (two-sided) also indicate that the two load levels were 
significantly different (Z = -4.3, -4.3, -4.1, -4.2, -4.3, -4.3, 
respectively, p < 0.001) at each time they were rated. 

Table 1 presents the average accuracies with their 95% 
confidence intervals across 24 participants for task load level 
and load type estimations using the proposed event-based 
features and suggested baselines. We can see that the best task 
load level estimation performance was 84%, using the fused 
event-based features, which is far better than other methods. The 
best performance for load type estimation was 89% and for load 
level and type recognition was 76%, both of which were 
achieved using the fused event-based features. However, the 
performance of statistical features seems not significantly 
different from the two best accuracies. 

V. DISCUSSION 

As expected, the subjective ratings across 24 participants 
after the first task of each category show that there are significant 
differences between the two designed load levels (Fig. 5(a)). 
Comparing with their ratings after the first task, there were some 
variations in the 24 participants’ ratings at the end of each group 
of tasks (Fig. 5(b)). These variations might be due to learning 
effects or fatigue effects. However, the significant differences 
between low and high load levels did not change according to 
the statistical tests. Therefore, their psychological and 
behavioral signals are expected to be different under the 
different load levels. It seems reasonable to adopt the designed 
load levels as the ground truth in modelling and evaluation. 

When examining the four event-based features individually 
(E1-E4 in the 2nd and 3rd block in TABLE 1), we found that three 
of them were better at discriminating load types than load levels. 
Among them, the sequence-based 2-gram features achieved the 
best accuracy, 82%, in classifying four task load types, followed 
by the proposed intensity-based event feature. This observation 
also applies to conventional statistical features (B1 in TABLE 
1), which achieved 88%, the best accuracy except for fused 
features (the 4th block in TABLE 1), for task type recognition, 
better than load level recognition, 75%. This suggests that task 
load type also affects participants’ physiological and behavioral 
signals and the performance is comparable with that in human 
activity recognition [24,31]. It could be beneficial to assess task 
load and type at the same time to avoid the confusion in 
interpreting them. 

(a)                                        (b)                                       (c) 

Fig. 4. The architectures of (a) multimodal LSTM for task load estimation,
where the input can be hand-crafted event-based features (Fig. 3(b)), (b)
multimodal LSTM where the input is the sequenced event signals (Fig. 3(a)
bottom), and (c) CNN-LSTM where the input is the raw event signals (Fig.
3(a)) obtained from eye images, speech waveform and head movement. 



On the contrary, only the coordination-based features (E2 in 
the 2nd block in TABLE 1) proposed in [26] (except baselines) 
were far better at classifying task load levels than task load 
types. The accuracy, 79%, was the best accuracy for load level 
recognition regardless of type, except the fused features. For the 
two proposed duration-based and intensity-based event features 
(E3 & E4 in the 3rd block in TABLE 1), they are capable of 
classifying load levels and load types, as their performances 
were comparable with the baseline performance for load level 
classification, and better than the baseline performance for load 
type classification, and for load level and load type classification 
(the 1st block in TABLE 1). When comparing the two proposed 
features, we found that the intensity-based feature was more 
effective as it ranked second among the four event-based 
features for load levels and load types classification 
respectively, and was best for both load levels and load types, 
62% for 8-class classification. Since the information carried by 
these event-based features is different, this indicates that the 

proposed two features can contribute to task load assessment 
along with other event-based features. 

To examine whether these four event-based features contain 
complementary information for both task load level and load 
type classification, we found that by concatenating them, the 
accuracy was significantly improved in classifying load levels 
(2-class), load types (4-class), and both load level and load type 
(8-class) as shown in the last row of the 2nd to 4th block in 
TABLE 1. The best accuracy was 84% for two load levels, 89% 
for four load types, 76% for both load level and type, 
outperforming all the baselines. Comparing with other studies, 
where only load levels were classified, our performance was 
comparable to theirs using a large number of modalities, 
including EEG [9] or using deep learning techniques with eye 
images [11]. It is worth noting that in our study, we trained the 
load level model with different tasks, unlike a single task in 
previous studies, therefore, our event-based features are more 
representative of different task types.  

  
                                              (a)                                                                                                                    (b) 

Fig. 5. Boxplots of the subjective ratings over 24 participants for the four task load types for (a) subjective ratings conducted at the end of the first task of each 
category and (b) subjective ratings along time conducted at the end of selected tasks during experiment. Note ‘cog’, ‘per’, ‘phy’, and ‘com’ denote ‘cognitive 
load’, ‘perceptual load’, ‘physical load’, ‘communicative load’ respectively, and ‘L’ and ‘H’ denote ‘low’ and ‘high’ respectively. 

TABLE I.  AVERAGE ACCURACY (95% CONFIDENCE INTERVAL) SUMMARY FOR TASK LOAD LEVEL AND TYPE RECOGNITION USING A LEAVE-ONE-
PARTICIPANT-OUT SCHEME AND USING EITHER LSTM OR CNN-LSTM NETWORK. 

 Feature 
dimension 

Beck-end 
type 

Load level 
regardless of type  

(2-class) 

Load type 
regardless of level 

(4-class) 

Load level and 
type recognition 

(8-class) 
B1: selected  statistical feature per task based on 
training data 

25 LSTM 0.75 (0.03) 0.88 (0.05) 0.73 (0.05) 

B2: onset event words  1 CNN-LSTM 0.59 (0.05) 0.66 (0.08) 0.49 (0.07) 
B3: raw event signals  5 CNN-LSTM 0.76 (0.04) 0.62 (0.10) 0.42 (0.07) 
B4: event duration signals  4 CNN-LSTM 0.73 (0.04) 0.64 (0.08) 0.41 (0.06) 
B5: event intensity signals  4 CNN-LSTM 0.76 (0.04) 0.70 (0.06) 0.56 (0.07) 
B6: raw event signals + intensity + duration  13 CNN-LSTM 0.76 (0.04) 0.76 (0.08) 0.45 (0.05) 

 
E1: selected sequence features per task 2-gram 
based on training data [19] 

25 LSTM 0.72 (0.03) 0.82 (0.05) 0.57 (0.04) 

E2: coordination features per task [26] 2 LSTM 0.79 (0.02) 0.60 (0.04) 0.54 (0.03) 
F1: proposed sequence + coordination features per 
task  

27 LSTM 0.80 (0.02) 0.86 (0.04) 0.70 (0.03) 

 
E3: proposed duration features per task  8 LSTM 0.69 (0.03) 0.77 (0.04) 0.54 (0.04) 
E4: proposed intensity features per task  8 LSTM 0.74 (0.02) 0.80 (0.03) 0.62 (0.03) 
F2: proposed duration + intensity features per task  16 LSTM 0.77 (0.02) 0.85 (0.03) 0.66 (0.03) 

 
F3: proposed coordination + duration + intensity 
features per task  

18 LSTM 0.84 (0.02) 0.86 (0.03) 0.74 (0.04) 

F4: proposed all event-based features per task 43 LSTM 0.84 (0.02) 0.89 (0.03) 0.76 (0.03) 



Among the baselines (the 1st block in TABLE 1), 
conventional statistical features also achieved good 
performance, especially for load type classification, and load 
level and type classification, where the performance was close 
to best. This is not surprising considering they are often 
employed in psychophysiological state recognition. However, it 
is important to mention that the 25-D statistical features (B1) 
were highly data driven since different features were selected in 
each of the leave-one-participant training process, while the 18-
D event-based features (F3) were fixed for all participants. This 
is one advantage of the event-based features, which represent 
task load well across different tasks and different participants, 
indicated by small confidence intervals (0.02-0.04), as well as 
being compact and easily interpretable.  

Surprisingly, the performance achieved by CNN-LSTM, i.e. 
self-learned features, was significantly worse than that using the 
fused event-based features. Specifically, when the input was the 
raw event signals, which the event-based features were also 
extracted from, its performance was 4% lower than that of the 
fusion of sequence-based and coordination-based event features 
in load level recognition, 24% lower in load type recognition, 
and 28% lower in both load level and type recognition. This 
indicates that the deep learning process did not learn better 
features than our hand-crafted features. We examined this 
closely by visualizing the gate activations of the intermediate 
layer before the LSTM1 layer from a participant whose 
performance was close to the average. As shown in Fig. 6, the 
features learned for low and high load levels were distinctive to 
some extent (i.e. the blue and red curves are not overlapping 
sometime), evidenced by the ordinary performance for load 
level classification (76%). However, the patterns learned for 
each of the four task load types are not very distinguishable. 

More specifically, the patterns for cognitive, perceptual, and 
physical task load look very similar. This explains why the 
performance of load type recognition and both load level and 
load type recognition were not very good, 62% and 42% 
respectively as shown in TABLE 1.  

Other direct comparisons to examine whether the deep 
learned features were better than the hand-crafted features using 
the same signals included: the onset event words along time 
versus sequence-based event features during tasks (B2 vs E1); 
event duration values along time versus the duration-based 
features during tasks (B4 vs E3); and event intensity values 
along time versus intensity-based features during tasks (B5 vs 
E4). Except for the case of load level recognition, the event-
based features (E1-E4) consistently achieved better accuracy 
than deep learned features (B2-B6) by 6-16%. For load level 
recognition, the deep learned features (B2-B6) achieved slightly 
better accuracy (2-4%) than duration and intensity-based event 
features (E3 & E4) but 13% worse than the sequence-based 
event feature (E1). The reason could be three-fold. It needs to 
learn a consistent pattern from four different task types, which 
is more difficult than learning the pattern from a single task type. 
Therefore, the pattern learned may not be effective enough if the 
data were not sufficiently large. Another reason could be that the 
patterns exhibited in detailed sequences were not very effective 
compared with the pattern extracted from the whole task. There 
could be a lot of impromptu behaviors during tasks. The last 
reason could be that the convolution process is not the best 
option for extracting useful information from these event 
signals, or psychological and behavioral signals in general.  

Even with end-to-end deep leaning with the 9-dimensional 
raw head movement data or 10s raw speech data for load level 

Fig. 6. A visualization of the gate activations (the third row in each group of three) in an intermediate layer (the masking layer, Fig. 4(c)) from a typical participant
and the corresponding raw event signals (the first two rows in each group of three) obtained from blink, saccade, pupil size, head movement and speech data under
the conditions of cognitive high (cogH) and low (cogL) load levels, perceptual high (perH) and low (perL) load levels, physical high (phyH) and low (phyL) load
levels, and communication high (comH) and low (comL) load levels, respectively. The horizontal axis is time. Due to space limitations, only the first 20 seconds
were plotted. This demonstrates how distinctive these features were in low and high load levels and across different task load types.  



recognition in our initial experiment, we did not find better 
performance than using the raw event signals but consumed 
large computing resources. Knowing this, we can design new 
deep neural networks which are more suitable for psychological 
and behavioral signals to assess psychological state in the future. 

One of the limitations is that we only used speech onset 
events from a large amount of acoustic data, so some 
information was ignored. For example, as the eye camera was 
close to the nose, sometimes deep breaths can be heard from the 
audio. As in the conventional statistical features, 39 MFCC 
features were used and three of them were found to be the most 
frequently selected from each leave-one-participant-out 
training. This could explain why the statistical features achieved 
good accuracy. 

VI. CONCLUSION 

In this work, we proposed two event-based features, namely, 
duration-based and intensity-based event features for task load 
assessment. Our results show that these two features have 
comparable discriminability to sequence-based and 
coordination-based event features, as well as the conventional 
statistical features in all or a few cases. When fusing the 
proposed two features with the other event-based features, we 
achieved state-of-the-art performance considering that different 
load types were used for task load assessment. This performance 
was better than that using the conventional statistical features 
and better than that employing a deep learning architecture, 
CNN-LSTM, with raw event signals as input in all cases. 
Considering the advantages of these event-based features, being 
more representative, compact, interpretable, and obtained from 
wearable sensors, it is promising to use them to assess task load 
in longitudinal and daily life to improve human and computer 
interaction. Future work could discover more behavior events 
and combine deep learning techniques to further improve the 
task load assessment performance. 
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