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Abstract—In recent years, machine learning has been used
in a very wide variety of applications and malware detection
is no exception. Because of its fast and widespread adaptation
to various diverse fields, machine learning can, and often is,
treated as a black box. The disadvantage of doing so is that
the decisions can often be difficult to interpret which can be
especially challenging in the field of malware detection. Training
deep neural networks also requires a vast amount of data from all
classes which can be quite challenging in the field of proprietary
software, specially for smaller research labs. In this paper, we
introduce a framework which interpolates between samples of
different classes at different layers to see how a deep network
architecture generalizes to samples that are not in the training
set, explaining the results of deep networks in real-world testing.
Using this framework, we attempt to demystify the mechanisms
behind the MalConv architecture [1] by analyzing the weights
and gradients of multiple layers in its architecture and decipher
what the architecture learns by analyzing raw bytes from the
binary. For this architecture, our analysis shows that the network
assigns much higher weights to specific portions of the executable
Indicating that these portions contribute significantly more to the
classification than other portions of the executable. Through the
proposed framework, we can explain the mechanisms behind
machine learning algorithms and explain their decisions better.
In addition, the analyses will allow us to look inside existing
networks without training them from scratch.

Index Terms—Cybersecurity, Malware Detection, Explainable
AI, Machine Learning, Neural Network

I. INTRODUCTION
Neural networks, and machine learning in general, have

become the default choice as a solution to tasks that were
previously considered to be generally unsolvable either in
reasonable amounts of time or with high enough accuracy on
real-world test situations. These include object detection [2],
image classification [3], [4] and natural language processing
[5], [6]. Many of the solutions provided work very well in
real-world situations, but the decisions taken by these systems
are not always easily interpretable. This has limited the use
of machine learning in fields like malware analysis where the
reasoning for a decision is just as important as the decision
itself. In addition, the data requirements for training these
networks are immense and while large datasets are becoming
more available, they are not available for proprietary software,
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specially to smaller research labs. We introduce a framework
to analyze the different steps of a trained neural network and
provide insight into the reasoning for its decisions.
Many of the tasks that are solved by neural networks are
presented as classification problems and one of the most
important classification tasks in the field of security is being
able to differentiate between malware and goodware. Malware
attacks were estimated to have cost more than 2.7bn in
damages in 2018 [7]. To combat malware, there have been
numerous approaches over the years, including but not limited
to antivirus programs, virtual environments, dynamic analysis
and symbolic analysis [8], [9]. Each one of these has its
share of advantages and shortcomings. Antivirus programs,
which are most widely used, use signatures which can be
very specific if they want to reduce their false negatives or
extremely generalized to reduce false positives. To get around
this, pattern recognition and machine learning have been used
for the malware detection task since 2001 [10]. All these meth-
ods had to deal with creating features from the executable, be it
external library functions or DLLs and strings [10], n-grams of
byte-codes [11], [12] or a combination of all or some of them
[13], [14]. Machine learning methods can automatically learn
discriminative features from raw inputs, but all these methods
require manual feature extraction and a significant amount
of domain knowledge which is complicated, time-consuming,
non-trivial and in some cases, they might not capture the best
features required for classification. The MalConv [1] architec-
ture aims to remove these shortcoming by providing the raw
bytes from a file as input to a convolutional neural network
which then classifies the given binary as either malicious or
benign. The core idea is that the network will be able to
successfully extract discriminative features like they have for
other tasks like image classification [15], speech and signal
processing [16] and text understanding [17].
Additionally, the global interest in machine learning and its
applications has caused a huge number of models being trained
for the same tasks. This has incurred a substantial energy cost.
For instance, training a big Transformer model with Neural
Architecture Search has the same carbon footprint as five
family cars over their entire lifetime [18]. Similarly, training
the base BERT model [5] can cost up to $12,500 [18]. If we
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have access to trained networks and we can look inside them
to understand their workings, then we can tweak them to our
requirements without needing to retrain them, thus avoiding
the cost and carbon impact.
In this paper, we analyze the MalConv architecture using our
framework in an attempt to understand how the system learns
to discriminate between malicious and benign executables
using raw bytes. Our contributions include gradient analysis
at various stages of the trained network to see how the system
assigns weights to different portions of the executable, analysis
of the filter weights and their activations for different files.
Finally, we also show how generalization in neural networks
can be achieved though linear interpolation between samples.
The paper is organized as follows. Section II introduces some
work that has been carried out in this field followed by
their results and Section III describes the architecture of the
MalConv [1] model, the open-source model (emberMalConv)
[19] we use for our analyses, our data and our testing results
compared to MalConv [1] and emberMalConv [19]. The next
section describes the various analyses carried out by our
framework, the findings and our interpretations of it. In the
last section, we conclude with a summary of our findings and
describe future plans for our framework and how it can aid the
machine learning community move towards more explainable
AI.

II. RELATED WORK

Limited work has been carried out in the area of analysis of
deep networks used for malware classification.To the best of
our knowledge, there are two notable studies in this field [20],
[21]. The first of these, explained in Section II-A looks at the
byte activation [20] of the network although it uses a different
network [22] than MalConv [1]. The other notable work [21],
detailed in Section II-B uses the same network that we used,
but their analyses are different.

A. Byte Activation Analysis

Byte-activation analysis [20] looks at the response of a
network to a given input and maps the activations of the
various bytes. The network used in this case is the CNN
proposed by FireEye [22] and is shown in Figure 1. In this
architecture, three networks are trained with a combination
of different parameters (dropout on/off) and training set sizes
(7M files vs 15M files). For the rest of the paper, we will use
the following names for the corresponding models:

1) Baseline: This model was trained on 7M samples with
an equal split between malicious and benign files

2) Large: This model was trained on 15M samples with
an 80/20 split between benign and malicious files

3) Dropout: This model was also trained on the same
dataset as “Large”, but the network included dropout
layers

The analyses were carried out on three different levels and
their results are as follows:

• Byte relationships: The analysis carried out at this level
was a hierarchical clustering using HDBSCAN [23]. The

Fig. 1. FireEye CNN for malware classification [20]

two clusters created are of bytes that can be easily
interchanged and ones that would cost considerably more
to swap (outliers). Numbers of outliers grows from the
Baseline (13), to the Large (31), to the Dropout (158)
model. The outlier bytes for the Baseline and Large
models are typically registers and the call instruction.

• Low-level features: The analysis at this level shows
that the majority of activations happen on a single fil-
ter, import name and common instruction features are
instrumental to the classification across all three models.
For both malware and benign files, the largest number
of activations are around the beginning of the file in the
Baseline and Large models.

• High-level features: The analysis of the end-to-end fea-
tures shows that a number of features are extracted at
this level which are routinely used by analysts. These
include detection of the Rich header present exclusively
in Microsoft binaries and checksum validation (0 in
Baseline and Large models, valid value in Dropout)

B. Adversarial Vulnerability

Adversarial examples are defined as inputs having small,
imperceptible perturbations [24], [25] which cause a neural
network to misclassify it. Neural networks designed to detect
malware automatically are not immune to attacks like these
and that is the focus of the second approach [21] to analysing
the MalConv architecture. This approach analyzes the network
to create adversarial examples which are misclassified by
the network. A similar approach has also been tried before
[26], [27], but the analysis carried out in this work is in
direct contrast to the results from [20]. While that makes it
interesting, it also allows our research to reconcile these two
seemingly disparate findings. For their analyses, the authors
used a technique called feature attribution [28] where the
most significant features to each contribution are identified by
calculating their integrated gradients [28] against a baseline
signal. For their experiments, Demetrio et al. [21] chose an
empty file as a baseline. The main findings from [21] are as
follows:



Fig. 2. Architecture for the MalConv model [1]

• Bytes from the DOS header are used for classification,
which is strange since modern operating systems don’t
read the DOS header except for the magic number ‘MZ’.

• The highest gradient values are observed for the COFF
and other headers, with other sections like .text and .rsrc
with minimal gradients.

As with both previous works [20], [21], our framework allows
us to plot the gradients of the network layers as a response to
an input signal in order to explain the decision boundary of the
network. However, our framework also allows us to interpolate
between samples of different classes in order to explain the
underlying reason for neural networks to be able to generalize
from training samples to unseen data. In addition, we are also
able to run architecture-specific analyses as shown in Section
IV-C.

III. THE NETWORK MODEL

In this section, we describe the original MalConv model,
the emberMalConv model we used for our analyses and the
accuracy and F1-scores achieved on our dataset.

A. MalConv Architecture

The model we analyse in this paper is called MalConv
[1]. It was introduced in 2018 as an end-to-end convolutional
neural network which can discriminate between malicious and
benign files reliably on the basis of raw bytes alone without
any feature engineering. The architecture of the network is
shown in Figure 2. The embedding layer is learned during
training and used as a lookup thereafter. It produces an 8-
dimensional embedding for each byte, which are then fed into
two convolutional layers. Each of the convolutional layers
have 128 filters of size 500 and stride 500, meaning there
is no overlap between two convolutions. The outputs of the
two convolutional layers are then multiplied, the result of
which is forwarded to a max-pooling layer followed by a fully-
connected layer. The final softmax layer produces a prediction
value (p) between 0 and 1. If p ≥ 0.5, then the file is classified
as malicious, otherwise it is classified as benign.

B. The emberMalConv Model

According to the authors of MalConv [1], their model
cannot be trained on a single GPU due to the massive memory
requirements. Without access to the required hardware, we
were unable to train this model from scratch and the authors
do not have a trained model for researchers to use. Instead, we

TABLE I
OUR ACCURACY AND F1-SCORES AGAINST MALCONV [1] AND

EMBERMALCONV [19]

Dataset Accuracy F1-Score
Reduced 87.1 87.3

MalConv [1] 94.0 98.2
EMBER MalConv [19] 92.2 -

(97.3 with 1% FP)

used an open-source implementation of the model called em-
berMalConv [19]. There are some minor differences between
the two models, which are as follows:

• It uses a special padding byte. The authors of MalConv
did not specify if they used a special padding byte.

• It uses a smaller batch size (100 vs 256). The smaller
batch size is supposed to improve training stability and
generalization performance [29], but the improved gen-
eralization might affect accuracy results between the
two models. Additionally, generalization might not be a
desirable quality in this task as we explain in Section IV

• While MalConv allowed files up to 2MB, this architecture
only allows files up to 1MB due to memory limitations
on their GPU. Smaller file sizes could lead to different
features being learned across the file

• Maybe most significantly, the model was trained on the
EMBER dataset [19], which is a fair bit smaller than the
dataset used to train MalConv. The different dataset used
for training will lead to different features being learned
by the different layers

C. Data and Testing Results

For our testing, we used a dataset of around 700 files, all
of which are under 1MB as required by the model. It is a
nearly even split of files between the two classes (357 benign,
332 malicious). The benign files are taken from Windows
System32 folders and the malicious files are a subset of the
MALICIA dataset [30]. One of the biggest challenges we faced
while carrying out our analysis was the lack of a dataset
for benign executables. While we did have a large dataset
of malicious executables, we didn’t want to skew our results
towards a specific class, so the sizes of both datasets were kept
very similar. In Table I, we present the results we achieved on
our dataset (“Reduced”). Our scores are highlighted in bold.
As we can see, the results on the small dataset are a few
points short of the reported findings from MalConv [1] and
emberMaclConv [19], but this can be attributed to the size of
our dataset. In the next section, we present our analyses and
findings using our framework.

IV. ANALYSES

To analyze a neural network, common approaches involve
gradient analysis of the output with respect to different input
signals and/or intermediate representations to understand the
decision boundaries between different classes. This section
describes the various analyses we ran using our framework



on the emberMalConv [19] model to explain the mechanisms
behind its discriminative decisions. Before we do that, it
should be noted that this framework can easily be extended to
any neural network. We chose the task of malware detection
because it is a significant strain on cybersecurity personnel
to hand-engineer features for anti-virus signatures, sometimes
requiring up to 10 hours of work [31] per family of malware.
This domain knowledge requirement allows malware authors
to simply obfuscate their code using a custom packer to
avoid detection from traditional detection methods. A machine
learning system should be able to avoid that pitfall and learn
beyond byte sequences to understand mechanisms based on
their success in other fields using unsupervised systems [3],
[15]. MalConv [1] was one of the most recent systems to
apply machine learning to this task. Additionally, it requires
no additional parsing like PE Imports or strings and this is the
reason we chose to analyse this specific network.

A. Gradient analysis

Using our framework, the first thing we wanted to analyse
was the gradients of each block with respect to the output.
While there are definite spikes in the first block which contains
the header, it is not significantly higher than the gradient
of other blocks in the file. This is in contrast to the results
from [21] where the gradients of the headers are found to be
much higher than the other portions of the file. We present
the results of our gradient analysis in Figures 3 and 4 below.
In the figures, the sections of the graph in red indicate the
headers and the blue indicate the other sections of the file.
As we can see in the first graph in Figure 4, the packed files
can sometimes cause the disassembler to misread the length
of the header. We only show a small subset of our dataset
spanning all file sizes, but this trend was noticed across the
entire dataset, showing that all portions of the file contribute
to the classification even though the gradients for the headers
are consistently high. Additionally, we find the gradients of the
output with respect to the outputs of the max-pooling layer.
These are shown in Figures 5 and 6. We noticed a constant
peak in all the files at filter #45. Since this is a framework to
analyse all kinds of neural networks, we didn’t analyze what
that specific filter was checking as that would make it specific
to the malware detection domain, but that can be achieved
quite easily.

B. Interpolation between samples

The next analysis from our framework involves interpolating
between correctly classified samples from the two classes to
find a decision boundary between the two classes in an effort
to explain the discriminative abilities of the network. To pick
the files, we ranked the files in order of their predictions i.e.
closest to 1 was the most malicious and closest to 0 was
the most benign. We then interpolated between these files
with a step size of 0.05, leading to a total of 20 samples
between each samples, counting the original samples. The
results of the interpolation can be seen in Fig. 7. None of
the 225 possible combinations go back and forth across the

Fig. 3. Gradients of embeddings for a subset of the benign files

Fig. 4. Gradients of embeddings for a subset of the malicious files

Fig. 5. Gradients of max-pooling outputs for a subset of the benign files



Fig. 6. Gradients of max-pooling outputs for a subset of the malicious files

decision boundary, showing that there’s an increasing trend
between benign files and malicious files when it comes to
predictions about their maliciousness. It also strongly hints that
linearly interpolating between samples could be how machine
learning algorithms generalize to unseen inputs. In addition

Fig. 7. Trend for decision boundary between interpolated samples from most
benign to most malicious

to interpolating between the strongest representatives of each
class, we also interpolate between random samples from each
of the classes shown in Fig. 8. As we can see, only a small
percentage (approximately 3%) of the interpolated samples go
back and forth across the decision boundary before settling on
a class before reaching the malicious file. To further expand
on this idea, we interpolate between two files and run the
gradients analysis from Section IV-A on these samples. To
present our results in a readable manner, we use a step size of

Fig. 8. Trend for decision boundary between random interpolated samples
from each class

0.125, resulting in 8 interpolated samples. We ran the analysis
on multiple pairs of files and present the results from one of
the pairs here in Fig 9. For similar sized files, the trend is that
the predictions change very sharply instead of smoothly, as
we had expected. We should note that there is a max-pooling

Fig. 9. Gradients of blocks in interpolated samples

layer after the convolutions which is not a linear layer. Using
the framework, we extract the results of the max-pooling layer
and interpolate between those outputs for pairs of files. These
results are shown in Figure 10. As we can see, the change
in predictions is much more linear at this point. We present
the results for only one set of files, but this holds true for all
the pairs we tested. The peak value of the filters is seen in
filter 45, which is also true for all the samples we tested. It
also aligns with other results [20] where the vast majority of
activations also happened on a single filter.

C. Filter Correlation

Following our analysis showing the highly prevalent ac-
tivations for a single filter on all the samples (true and



Fig. 10. Gradients of max-pooling outputs in interpolated samples

Fig. 11. Maximum correlation between Filters A and B

interpolated), we wanted to see the correlation between and
within the two sets of filters A and B in order to see if they
were learning similar or disparate things. These results are
shown in Figures 11 and 12. As we can see from the figures,
the filters A and B are strongly correlated, leading us to believe
that the filters are learning mostly similar features. We wanted
to see if the filters were correlated within themselves, so
we generated correlation heatmaps for the filters themselves.
These are shown in Figures 13 and 14. As we can see, the
filters themselves are not correlated, leading us to believe
that each filter learns a distinct feature, only one of which
is strongly activated. It should be noted that this analysis is
architecture-specific and while it is part of our framework, it
cannot be applied to all networks.

D. Additional Experiments

Keeping in mind the correlative properties of the filters, we
wanted to run an experiment where the filters are replaced, one
at a time, by the other one. Since the filters are identical except
for their activation functions, this involved copying a model
from the original and then changing the weights of one filter
with that of the other. We got some surprising results which
are shown in Table II. The accuracy on our test set went up
by about 4 points when we replaced B with A and dropped
to about 50% when we replaced A with B. We denote these
models with A→B (B replaced by A) and B→A (A replaced
by B)

Fig. 12. Minimum correlation between Filters A and B

Fig. 13. Filter A Correlation heatmap

Fig. 14. Filter B Correlation heatmap



As we can see from Table II, B→A misclassifies almost
every goodware sample, but correctly classifies nearly every
malware sample. On the other hand, A→B improves on the
false negatives, but has a higher false positive. Intuitively, it
seems like Filter A is responsible for detecting the parts of the
file which are goodware, but it is also a much more generalized
filter whereas Filter B seems to be a very focused filter that
seeks out the specific portions of a file that make it malicious.
This seems to align with the finding from analysts that most
parts of an executable are not malicious, but specific parts
of it make it, or at least make it look, malicious. Another
hypothesis for the improvement in the replaced model could
be due to ineffective training. This could mean that the training
reaches a local minimum region in the parameter space and
the optimization algorithm can not escape or the training was
not run for a long enough period of time. It also shows that
the proposed technique can not only provide better insights
how the classifier classifies different inputs, but also explore
other solution regions with potential better performance.

TABLE II
ACCURACY AND F1-SCORES BY REPLACING FILTERS

Model Accuracy F1-Score Misclassified Misclassified
Malware Count Goodware Count

Reduced 87.1 87.3 25 64
B→A 48.2 64.9 2 355
A→B 91.2 90.7 34 27

V. CONCLUSION AND FUTURE WORK

The findings from our analyses are able to reconcile the dis-
parate findings from [20] and [21]. While there are definitely
high gradient values at the beginning of the files indicating
that the headers contribute strongly to the classification, there
are also gradient peaks elsewhere (sometimes exceeding the
header peaks) in the file, indicating that other portions of
the file are also responsible for the classification results.
Additionally, the two filters seem to learn two sets of features,
one that allows it to generalize (Filter A) and another that
focuses on the malicious aspects of the file (Filter B). This is
in line with the findings from [20] which uses a different model
[22] with overlapping filters. This brings up the question of
how much information from a filter is retained even without
any overlap between them. It is also possible that a single filter
in the emberMalConv architecture is large enough to capture
all the features that required multiple filters in the FireEye
architecture [22].
The interpolation between samples shows that as we move
from one class to another, the neural network classifies sam-
ples close to one class as that class even though the sample
itself might not be a valid one. This could be the reason that
neural networks are able to generalize well to samples that
it has not yet encountered, but is close to some interpolated
values between two classified samples.

We would like to emphasize that while we used our framework
to analyze an end-to-end malware detection network, this
framework can be used to analyze any other neural network
which performs classification. By assigning and examining
values of the outputs of various layers within a neural net-
works, we should be able to better interpret the results of a
neural network and hopefully expand the areas of its applica-
tion without retraining it from scratch and avoid incurring its
associated energy and carbon costs.
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