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Abstract— This paper presents a comparison between two 

recurrent neural networks (RNN) for arterial blood pressure 
(ABP) estimation. ABP is a parameter closely related to the 
cardiac activity, for this reason its monitoring implies 
decreasing the risk of heart disease. In order to predict the ABP 
values (both systolic and diastolic), electrocardiographic (ECG) 
and photoplethysmographic (PPG) signals are used, separately, 
as inputs of the networks.  To train the artificial neural 
networks, the synchronized signals are extracted from the 
Physionet MIMIC database. The output-error Neural networks 
(NNOE) and the Long Short Term Memory (LSTM) 
architectures are compared in terms of RMSE and absolute 
error. NNOE neural network, with ECG signal as input, results 
the best configuration in terms of both the proposed metrics. 
The predicted ABP falls within the values of the normative 
ANSI/AAMI/ ISO 81060- 2:2013 for sphygmomanometer 
certification. 

Keywords—Arterial Blood Pressure, ECG, electrocardiogram, 
photoplethysmogram, PPG, recurrent neural networks, RNN. 

I. INTRODUCTION  

High blood pressure (or hypertension) is a worldwide 
health problem, which represents one of the major causes of 
premature death in the world, killing roughly 8 million people 
per year [1]. Hypertension is a condition in which the blood 
vessels have persistently raised pressure, increasing the 
pumping function of the heart and leading to hardening of the 
vessels. Healthy blood pressure is considered as a systolic 
blood pressure (SBP) less than 120 mmHg and a diastolic 
blood pressure (DBP) less than 80 mmHg; on the contrary, 
hypertension is defined as a SBP equal to or above 140 mmHg 
and/or DBP equal to or above 90 mmHg. Systolic pressure 
measures the pressure in the arteries when the heart contracts 
and is the highest number on a blood pressure reading. The 
diastolic represents blood pressure when the heart rests 
between the beats. According to the American Heart 
Association (AHA),  it is possible to classify in four different 
stages the levels of hypertension that characterize the state of 
health of the individual (healthy, pre-hypertensive, Stage 1 
hypertension, Stage 2 hypertension) in relation to the pressure 
values [2]. Table 1 shows values for normal and high blood 
pressure.  

Continuous monitoring blood pressure can prevent the 
onset of irreversible health problems (coronary heart disease, 
stroke, renal failure etc.). Because of hypertension has no 
symptoms, it is called the silent killer.  

The medical gold standard method for blood pressure 
measurement uses sphygmomanometer and Korotkoff sound 
technique. Unfortunately, this procedure may lead to the 
misclassification of large numbers of patients because the 
model has inaccuracies. Indeed, the inherent variability of 
blood pressure and the tendency for blood pressure to increase 
in the presence of a physician (the so-called white coat effect) 
can affect the classification process and consequently prevent 
the identification of cases in danger [3]. Another measurement 
method is the intra-arterial blood pressure (IBP), a technique 
used in the Intensive Care Unit (ICU) and in the operating 
theatre. This technique involves direct measurement of arterial 
pressure by inserting a cannula needle in a suitable artery. The 
advantage is a continuous patient monitoring of the arterial 
blood pressure (ABP) together with its waveform 
visualization on a display [4].  Despite the precision, this type 
of measurement is provided exclusively in the hospital 
environment because it is very invasive. Therefore, in addition 
to the inconvenience of measurement, intra-arterial contacts 
can cause infections [5]. 

The models proposed in literature for non-invasive neural 
ABP estimation still have a low prediction reliability for both 
systolic and diastolic pressures. For this reason, the proposed 
model aims to overcome the limits of the state of the art with 
two specific recurrent neural networks, trained with intra-
artery pressure measurement model, which is very accurate, 
as target. 

The innovative contribution of the paper is characterized 
by the idea of a non-invasive method for measuring pressure 
by means of machine learning (ML) techniques, therefore 
without an uncomfortable device but still guaranteeing high 
precision. ML learning techniques, especially deep learning 
techniques, have been applied to efficiently analyze large data 
collections in biomedical research field (such as Brain 
Computer Interface [6], Alzheimer's disease detection [7] , 
Parkinson's Disease detection [8] ). Application of these 
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methods to medical signals can aid the clinicians in clinical 
decision making. 

Rest of the paper is organized as follows. Sec. II carries 
out an analysis about the studies on cuff-less blood pressure 
estimation with artificial neural networks. Sec. III describes 
the methodology of the proposed method. Sec. IV details the 
experimental results, followed by conclusion in Sec. V. 

Table 1. Classification of Hypertension 

BP Classification 
SBP 

   (mmHg) 

DBP 

   (mmHg) 

Healthy < 120 < 80 

Prehypertensive 120-139 80-89 

Hypertension Stage 1 140-159 90-99 

Hypertension Stage 2 > 160 > 100 

II. RELATED WORK 

Medical research presents several attempts for estimating 
systolic and diastolic blood pressure with a cuff-less 
methodology. Pulse Wave Velocity (PWV) represents the 
propagation velocity of the blood pressure pulse through 
the circulatory system. Arterial blood pressure can be 
estimated through PWV using the physical and mathematical 
description by Moens and Korteweg [9]. The inverse 
relationship between PWV and ABP is demonstrated by [10]; 
however, the mathematical model is based on mechanical 
principles, which use physiological traits difficult to estimate 
such as artery diameter and distance heart to fingertip. In [11] 
blood pressure estimation is carried out with the regression 
technique, but the wave velocity is referred only to the carotid-
femoral wave; this is a disadvantage since the estimation of 
pressure is more convenient to be implemented on wearable 
devices, which use the wrist pulse wave velocity.  

Another parameter used for ABP prediction is Pulse 
Transit Time (PTT), which is the time taken by pulse wave to 
propagate from heart to the peripheral points of the body (e.g. 
fingers or ear lobes). PTT is inversely proportional to PWV 
and it can be used to measure arterial blood pressure changes 
continuously. However, PTT is influenced by the compliance 
of the arterial walls (even to diseases such as osteoporosis) and 
this make the model not very general and robust [12].  

The above cited techniques are generally based on 
estimated parameters averaged on a quite different population. 
As a consequence, arterial blood pressure estimation methods 
do not generalize effectively. Moreover acquiring patient 
physiological parameters, e.g. artery diameter, is difficult. To 
overcome these limits, artificial neural network models have 
been proposed. In [13] they are used to predict ABP values 
and through a comparison of different neural architectures, the 
most performing is evaluated.  

Our proposed model aims to address a regression problem 
using two different neural systems (see Sec. III).  In order to 
predict ABP values, photoplethysmography (PPG) signal is 
used as input of the artificial neural network. Indeed, in 
literature, blood pressure has been demonstrated to be closely 
related to PPG [14], which is an optical measurement 
technique to detect blood volume changes in the 
microvascular bed of tissue [15]. In addition, since blood 
pressure is, also, closely related to cardiac activity, neural 

architectures have been trained with the electrocardiogram 
signal (ECG) as input, and compared with the previous ones.  

III. METHODOLOGY 

In order to treat the problem of estimating blood pressure, 
two different neural networks were compared: the output-
error Neural networks (NNOE) and the Long Short Term 
Memory (LSTM). The two approaches use recurrence in a 
different way: the former as a regression vector, the latter 
straight in its structure. Fig. 1 shows the pipeline used for ABP 
detection flowchart. In particular: 

 Raw Signals: input (ECG or PPG) and target signal 
(IBP). They were all acquired from the database, 
filtered with a moving mean (window length equal to 
3) and used to train the artificial neural network 
models. 

 The output signal from the network is compared with 
the target signal in terms of root mean square error 
(RMSE). 

 The target and output signals were characterized by 
systole points (referring to systolic pressure) and foot 
points (referring to diastolic pressure). The BP values, 
both systolic and diastolic, were compared by means 
of a difference (in mmHg) between targets and output. 

 

Fig. 1 Methodology flowchart 

A. Dataset Description 

The signals used for training the networks were extracted 
from the MIMIC (Multiparameter Intelligent Monitoring in 
Intensive Care) database [16] [17]. This database includes 
PPG and ECG, which are used as inputs and the IBP, which 
is used as training target, for the estimation of the systolic and 
diastolic blood pressure values. Fig. 2 illustrates the signals 
of the neural system with the PPG as input signal and the 
blood pressure as target.  Fig. 3 shows the signals about the 



neural system with ECG input and IBP target. The resulting 
training set has 300.000 samples for each signal; two-thirds 
have been used for training, while the remaining for testing 
and validation. 

 
Fig. 2. ECG signal (input) and ABP signal (target) 

 
Fig. 3. PPG signal (input) and ABP signal (target) 

B. NNOE - Neural Network  Output-Error 

The purpose of Neural Network Output-Error (NNOE) is 
the identification of nonlinear dynamic systems in stochastic 
environment [18]. Fig. 4 describes the procedure that must be 
executed when attempting to identify a dynamical system. 

 
Fig. 4. System identification  procedure 

The experimental phase is represented by the description of 
the dataset 𝑍ே , which describes the entire system in its 
operating region with a proper choice of sampling frequency: 

 𝑍ே = {[𝑢(𝑡), 𝑦(𝑡)|௧ୀଵ,…,ே]} (1) 
 
𝑢(𝑡)  is the control signal, 𝑦(𝑡)  represents the measured 
output signal and 𝑡 specifies sampling instant number. 

For the selection of model structure is necessary to choose 
a set of regressors. The goal is to select a number of regressors 
based on the idea of a linear system identification and then 
determine the best possible network architecture. The 
selection of regressors as inputs of the artificial neural 
network is carried out by Lipschitz method [18], as showed 
in Fig. 5.  
. 
For NNOE, the shape of regression vector is given by: 

𝜑(𝑡) = [𝑦ො(𝑡 − 1|𝜃) … 𝑦ො(𝑡 − 𝑛|𝜃)   𝑢(𝑡 − 𝑑) … 𝑢(𝑡 − 𝑑 − 𝑚)]் (2) 
 
where 𝜃  is a vector containing the weights, 𝑛  is the y-
predicted lag, 𝑚 is the input lag and 𝑑 the delay to obtain the 
prediction (also called skip). 

 
Fig. 5 The NNOE model structure 

The prediction vector is the following: 
 

 𝑦ො(𝑡|𝜃) = 𝑔(𝜑(𝑡), 𝜃) (3) 
 
where 𝑔  is  the function realized by the artificial neural 
network. The functions for estimating model are based on 
recurrent networks. The most common method of validation 
is to investigate the residuals (prediction errors) by cross-
validation on a test set. 
 

C. LSTM – Long Short Term Memory 

Recurrent Neural Network is a generalization of 
feedforward neural network that has an internal memory. The 
most popular RNN are the Long Short-Term Memory 
(LSTM) networks, because makes it easier to remember past 
data in memory, resolving the vanishing gradient problem of 
RNN. The LSTM are based on special units called memory 
blocks (see Fig. 6). Each memory block contained an input 
gate, which controls the flow of input activation, and an 
output gate, which controls the output flow of cell activations 



into the rest of the network [19]. The forget gate was added 
to the memory block to scale the internal state of the 
following cell, before adding it as input to the cell through the 
self-recurrent connection of the cell, therefore forgetting or 
resetting the cell’s memory [20]. 

 
Fig. 6. LSTM memory block 

The hidden state (ℎ௧) is created by the following step:  
 The forget gate tells the cell state which 

information to forget by multiplying 0 to a position 
in the matrix. 

 𝑓௧ = 𝜎൫𝑊[ℎ௧ିଵ, 𝑥௧] + 𝑏௧൯ (4) 

 The input gate determines which information 
should enter the cell state. 

 𝑖௧ = 𝜎(𝑊[ℎ௧ିଵ, 𝑥௧] + 𝑏) (5) 
 The modulation input gate allows the cell state to 

forget memory. 
 �̃�௧ = 𝑡𝑎𝑛ℎ(𝑊[ℎ௧ିଵ, 𝑥௧] + 𝑏) (6) 

 The output gate decides what the next hidden state 
should be. 

 𝑜௧ = 𝜎(𝑊[ℎ௧ିଵ, 𝑥௧] + 𝑏) (7) 

where W presents the weights vector, b the bias and 𝜎  the 
sigmoid function. 

The working memory is called the hidden state. The 
hidden state contains information on previous inputs and it is 
also used for predictions.  

  ℎ௧ = 𝑜௧ ∗  tanh (𝑐௧) (8) 
where 𝑐௧ is the current state of the cell: 

  𝑐௧ = 𝑓௧ ∗ 𝑐௧ିଵ +  𝑖௧ ∗  �̃�௧ (9) 
 

IV. RESULTS 

The recurrent networks presented in the previous section 
have been tested on systolic and diastolic blood pressure 
estimation task; indeed, it has been divided into two subtasks: 
ABP estimation with IBP as target and PPG or ECG as input, 
respectively. Then, their performances have been compared 
in terms of RMSE and absolute ABP error (in mmHg). 
Several experiments were carried out for both architectures. 
In each attempt, at least one hyperparameter was changed, 
e.g. the number of units. For sake of simplicity, only the best 
results are reported because the scope of the paper is a 
comparison on ABP estimation performances rather than 
training or architecture simplicity.    

A. NNOE architecture 

The first set of experiments regards the use of NNOE. At 
the beginning, the number of regressors of the network has 
been determined with the Lipschitz quotients method [21]. 
Fig. 7 shows the Lipschitz graph, which can be used as a 
suggestion about the order of the system. The indices for 
system orders from 1 to 10 are investigated; the system can 
be modeled by a sixth order model, since the slope of the 
curve is decreased for model orders greater than 5. 

 
Fig. 7. The order index criterion evaluated with Lipschitz quotients method. 

In the application at hand, the NNOE architecture was 
implemented by a multi-layer perceptron (MLP), because of 
its capability to learn nonlinear relationship from a set of data. 
The hidden layer has 35 units for the PPG case and 40 in the 
ECG one. The activation function is hyperbolic tangent. To 
train the network Levenberg-Marquardt method is used [22], 
which is a very accurate techinque for feed-forward neural 
networks w.r.t. the training precision. It acts like a gradient-
descent method when the parameters are far from their 
optimal value, and like the Gauss-Newton method when the 
parameters are close to their optimal value [23]. The error 
function is, of course, the sum of squared errors. The network 
is trained twice: first with PPG signal as input and then with 
ECG signal as output. Before comparing the output of the 
network with the target, a moving mean filter (window length 
equal to 25 and 10, respectively) is applied to the output 
signal to remove noise artifacts. 

Fig. 8 and Fig. 9 show the comparison between target 
(blue solid line) and output (red dashed line) signals with PPG 
and ECG as input, respectively. In both cases, the prediction 
is accurate. The model is evaluated in terms of RMSE; in 
particular, RMSE shows better performances for NNOE with 
ECG input (RMSE = 2.42) than PPG (RMSE = 5.80).  



 
Fig. 8. NNOE - Target vs. output (PPG input) 

 
Fig. 9. NNOE - Target vs. output (ECG input) 

B. LSTM architecture 

The second experiments deals with an LSTM trained as 
before: first on PPG, then on ECG. The used LSTM 
architecture is composed of one input layer (350 neurons), 
one hidden layer (equipped with 500 neurons) and one 
regression output layer. To minimize the training error and 
avoid minimal points Adam optimizer is used. Adam 
optimizer is an adaptive optimization algorithm, which has 
witnessed better optimization performance than stochastic 
gradient descent (SGD), especially for training deep neural 
networks (DNNs) [24].  Fig. 10 and Fig. 11 show the 
comparison between target (blue dashed line) and output 
(orange solid line) signals with PPG and ECG as input, 
respectively. While the prediction of the blood pressure 
signal is accurate with the PPG signal, the ECG case is quite 
bad.  This is also confirmed by the RMSE, which, in the first 
case is equal to 5.35 while with ECG as input reaches 7.43. 

  

 
Fig. 10. LSTM – Target vs. Output (PPG input) 

 
Fig. 11. LSTM –Target vs. Output (ECG input) 

C. Performance Assessment  

The RMSE is not sufficient to assess the quality of the 
ABP estimation task. Indeed, it measures the point-to-point 
differences between two signals. In the application at hand, 
i.e. the ABP estimation, it is not required that the network is 
able to fully reproduce the target signal; indeed, only the 
peaks and valley of the IBP signal are important because they 
do represent the systolic and diastolic blood pressure, 
respectively. In this sense, the RMSE can be used as a general 
metric. To deepen the analysis about the best architecture for 
ABP estimation, the absolute errors (in mmHg) for SBP and 
DBP are evaluated for the four configurations. At this 
purpose, for each neural network and input (PPG/ECG), the 
characterizing points (foot, systole, notch and dicrotic peak) 
of the blood pressure signal were extracted both from output 
and target signals [25].  Fig. 12 shows an example: the systole 
points (green triangles) represent ABP values referred to the 
systolic blood pressure, while the foot points (violet triangles) 
are referred to the diastolic blood pressure. All the systoles 
and all the foots were averaged to compute SBPs and DBPs 
both for the target and the output. Then, their difference is 
evaluated to measure the absolute errors in mmHg. 



  
Fig. 12. Characterization of the ABP signal points 

Table 2 yields the regression performance of all the tested 
architectures. In terms of RMSE, the NNOE architecture 
behaves better with PPG rather than ECG, while LSTM 
exhibits an opposite response. For the absolute error, NNOE 
performs conversely w.r.t the RMSE, i.e. the ECG is better, 
while LSTM maintains the same behavior. 

Table 2. RMSE and absolute error performances 

 
RMSE 

absolute error [mmHg] 
Dias Sys 

NNOE PPG 5.80 2.36 0.69 
ECG 2.42 1.26 0.7 

LSTM PPG 5.35 1.51 5.26 
ECG 7.43 5.54 12.72 

 

D. Result discussion  

The NNOE approach is tailored on the input signals 
because of the choice of the regressors and the associated lags 
depend on the database at hand. This point of view considers 
the method as, basically, a feature selection, unlike the deep 
learning techniques, which automatically extracts their own 
attributes. In this sense, the better results of NNOE w.r.t. 
LSTM are justified by the fact that the regressor choice is 
better suited for this application. Despite the fact that NNOE 
requires far less inputs than LSTM (6 vs 350, respectively), 
the time-sequence is not well understood by the deep 
approach. However, NNOE works better with ECG than 
PPG; probably two different sets of regressors are required, 
and the input layer has been chosen for working with both 
signals. Indeed, future work will deal with the use of both 
channels for the neural approach. This can also explain the 
fact that for LSTM, the contrary is true, i.e. the best results 
are for PPG. The PPG signal gives a better cue for ABP 
estimation. This is not true for NNOE, because it is better 
suited for ECG, but LSTM is able to exploit automatically 
this advantage.  

The results of this application are another example of the 
debate among neural experts about the way recurrence has to 
be implemented. Indeed, the two approaches of NNOE and 
LSTM, as seen before, use recurrence in a different way: the 
former as a regression vector, the latter straight in its 
structure. We claim that in this application the NNOE 
approach is better. The theoretical justification of this 
statement is out of the scope of this paper.  

Finally, NNOE neural network with ECG signal as input 
is the best configuration in terms of both the proposed 
metrics. Indeed, the predicted ABP respects the normative 
ANSI/AAMI/ ISO 81060- 2:2013 for sphygmomanometer 
certification. 

V. CONCLUSIONS 

 In this research, blood pressure neural based estimation 
methods are analyzed. ABP is an important physiological 
parameter, which must be monitored to prevent and detect 
cardiovascular diseases. The analysis compares two recurrent 
neural networks for time series prediction: NNOE and LSTM. 
The former is a network with a number of regressors as inputs, 
which try to identify nonlinear dynamic systems; the latter is 
a deep neural network that carries information thanks to 
memory cells. The regression results are evaluated in term of 
RMSE and absolute errors. In particular, because of the 
regressors choice as input, NNOE tackles the problem better. 
The comparison is addressed also to input configurations 
(PPG/ECG); the analysis showed that there is no coherent 
efficient input for both networks. Future works will deal with 
improving the blood pressure estimation with NNOE method 
with ECG as input (the best configuration of the analysis), 
and, also, testing the proposed artificial neural network 
systems with both ECG and PPG as inputs.  
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