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Abstract—In this paper an initial approach to Intelligent
Control (IC) using Genetic Programming (GP) for access to space
applications is presented. GP can be employed successfully to
design a controller even for complex systems, where classical
controllers fail because of the high nonlinearity of the systems.
The main property of GP, that is its ability to autonomously
create explicit mathematical equations starting from a very poor
knowledge of the considered plant, or just data, can be exploited
for a vast range of applications. Here, GP has been used to
design the control law in an Intelligent Control framework for a
modified version of the Goddard Rocket problem in 3 different
failure scenarios, where the approach to IC consists in an online
re-evaluation of the control law using GP when a considerably big
change in the environment or in the plant happens. The presented
results are then used to highlight the potential benefits of the
method, as well as aspects that will need further developments.

Index Terms—Genetic Programming, Intelligent Control, Ma-
chine Learning, Evolutionary Algorithms, Access to Space.

I. INTRODUCTION

In one of his work [1], Koza, considered the father of GP,
pointed out the need and the possibilities related to an au-
tomatic methodology to design a controller optimizing both
its topology and parameters, so to fully exploit the increasing
computational power available to design a controller with bet-
ter performances and more reliable than classical controllers.
This is especially true considering systems like Space Access
Vehicles (SAVs), hypersonic vehicles and spacecrafts for space
exploration, which are defined by very complex physical
models with a high degree of non linearity, and potentially very
big uncertainties on operational conditions and models. Also
other researchers addressed these problems, for example, as
described in [2], traditional control design methodologies are
not always sufficient to completely define a complex system
such an hypersonic vehicle, hence the need of a new design
method incorporated into an IC framework. The need of IC is
also pointed out in [3], where traditional control methodologies
used in the aerospace industry are analyzed and it is concluded
that the controller design phase is deeply affected by the
lack of accurate mathematical models and the high-order and
nonlinear character of these models, hence the need of a new
kind of controller capable of taking into account these issues.
To tackle the problem described above, namely non lineari-
ties in the models and considerably big uncertainties in the
environment or in the control system, GP has been chosen
to produce the control law of the considered system within

an IC framework. For these kind of applications GP could
be a powerful tool since it allows the automatic creation of a
control law, with minimal human intervention. As mentioned
above, the application of GP for control system generation
is not new in the literature, but it is still not very common,
especially for aerospace applications. Some works regard the
design of a PID-based controller using GP, as in [4] and [5].
While others focus more on the particular GP algorithm used
for the controller design task, rather than on its application to
a realistic test case as in [6]. Moreover, up to now, none of the
already available works has aimed at designing a controller for
aerospace applications only using GP in an IC framework.
Such IC framework is particularly important and necessary if
the considered system has to autonomously and successfully
cope with uncertainties due to a lack of knowledge about the
environment and/or the control system at design time.
The paper is organized as follows: in Section II the theory and
some of the most important aspects of GP are presented; in
Section III IC is defined and the considered approach to it is
described. Section IV describes the selected test case, while
in Section V some results obtained over 3 selected failure
scenarios are presented. Finally in Section VI the conclusions
and some suggestions for future works are given.

II. GENETIC PROGRAMMING

Genetic Programming is a Machine Learning (ML) technique
originally introduced by Koza [7] in 1994. It pertains to the
class of evolutionary algorithms and it is capable of creating a
computer program by following the laws of biological evolu-
tion. In the GP, an individual is composed by a tree as depicted
in Fig. 1, where each tree represents a mathematical equation
itself. During the evolutionary process the nodes of the tree,
called genes, are recombined using evolutionary operators
such as crossover and mutation, to produce an offspring. The
individuals in the population will then be selected in order to
maximize or minimize a certain fitness function.
Given these characteristics, GP is well suited for symbolic
regression applications such as the design of a controller
optimizing both its topology and its parameters, as shown
in [1]. In fact, a controller, from the mathematical point of
view, is nothing more than a mathematical model that, given
certain inputs, produces a desired output. According to this, the
extreme flexibility of GP can lead to useful results in control
design applications, especially for those problems where high
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Fig. 1. Individual representation in Genetic Programming

non linearities are present, thus impairing or seriously limiting
the use of classical controllers.
Moreover, the ability to produce a mathematical equation is
especially important in comparison to other ML techniques,
since such equation could be analysed by the user with well
known techniques instead of having only a black box model.
Unfortunately, GP’s high flexibility comes with a great com-
putational cost compared to other ML techniques, such as Ar-
tificial Neural Networks (ANNs), and there are still some open
issues which impair the creation of a generalized methodology
for different GP applications.
Among these issues, there are:

• Constraints Handling: how infeasible individuals are rec-
ognized and treated.

• Exploration vs. Exploitation: relation between crossover
and mutation rates, and other techniques to avoid local
minima.

• Diversity: how to improve and maintain population di-
versity to avoid local minima and increase the chance of
exploring all the search space.

The constraints handling problem is thoroughly analysed in
[8], were many different constraints handling techniques are
presented, but the author also says how difficult if not im-
possible is to create a comprehensive technique which can be
applied with minor modifications to all kinds of problems. In
the test case considered for this work, just few constraints
are imposed and yet the GP is not always able to find a
feasible solution and must be guided to feasible regions of the
search space. In addition, it can also happen that these feasible
regions do not contain the global minima, thus requiring a
more complex approach to solve this problem.
The exploration vs. exploitation dualism is well described in
[9] and, as for the constraint handling problem, there is no
unique solution to this issue since there can be many different
approaches according to the particular problem considered.
About diversity handling, more can be found in [10].

III. INTELLIGENT CONTROL

Intelligent Control has been discussed and studied since many
decades, but great confusion lingers around this term. In fact,
many works were published in the past decades but after a
more in-depth analysis performed for the European Space

Agency (Contract Number: 4000124916/18/NL/CRS/hh), it
has been realized that not all of the published works on IC can
be actually described as IC according to its standard definition.
Such definition comes from both the work of Saridis [11] and
Antsaklis [12], and can be summarized as follows: a controller
can be defined intelligent if it can deal autonomously with
unforeseen changes in the environment, in the control system
or in the goals, by relaying on techniques pertaining to
the fields of Artificial Intelligence, Operations Research and
Automatic Control.
According to this definition the authors also proposed a tax-
onomy [13], and according to such taxonomy the IC approach
presented in this paper classifies as E3 C4 G0, which means
that the proposed controller can autonomously deal with an
Underlying physics of environment not well defined (E3), No
known controller structure (C4), and with Goals entirely pre-
determined by designer (G0) at design time.

A. Proposed approach to IC using GP

For this first step towards Intelligent Control, GP is used
to perform the online evaluation of the control law every
time a change in the environment or in the considered plant
happens. To do so, each of the 2 control parameters, the
radial and tangential Thrust, has been divided into two parts
as shown in Eq. 1. The first part, Tref (t), is fixed and it is
the reference value of the thrust obtained from the optimal
trajectory process. This term is useful since it provides the GP
some knowledge about the plant and facilitates the evaluation
of the second term, which is composed by the control law
evaluated with GP every time the tracking error between the
states values and their reference values becomes greater than
a certain threshold.

T (t) = Tref (t) + fGP (e1(t), ..., en(t)) (1)

A main issue arise with this approach, namely the initial
conditions for the GP evaluation must be defined a priori.
That means, that for the considered problem which requires a
propagation of a dynamical system, the time used by the GP to
perform the evaluation must be defined a priori as well. Such
time interval must be defined in a conservative manner so to
be slightly bigger than the actual time required by the GP,
but small enough to allow the controller to effectively control
the plant. Due to the stochastic nature of GP, the control law
was not always successfully evaluated within the given time
interval, so to justify the applicability of the proposed approach
to IC some statistics regarding how many times the evaluation
was successfully performed within the fixed time interval are
presented in Subsec.V-D.

IV. TEST CASE

The chosen test case is a 2-dimensional version of the Goddard
Rocket problem [14]. The mathematical model is shown in
Eqs. 3, where the thrust components Tr and Tt are the control
parameters and the drag components are defined as follows:

Dr =
1

2
ρvr

√
v2r + v2tCdS



Dt =
1

2
ρvt

√
v2r + v2tCdS

The density model used to obtain the optimal trajectory is:

ρ = ρ0e
−βr (2)
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T 2
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(3)

The plant constant parameters used for this problem are: Cd
= Drag coefficient = 0.6, S = Reference surface = 4.0 m2, Isp
= Specific impulse = 300 s, m0 = Total initial mass = 100000
kg, mp = Propellant fraction of the total mass = 0.99*m0, β
= Scale factor = 1/8500 m−1, ρ0 = Air density at sea level
= 1.225 kg

m3 , g0 = Gravitational acceleration at sea level =
9.80665 m

s2 , Re = Earth radius = 6371 km.
And the gravitational acceleration is evaluated as follows:

g = g0

(Re
r

)2
The chosen mission profile, used to obtain the optimal trajec-
tory, consists of reaching an altitude of 400 km while min-
imizing the propellant consumption. The optimal trajectory,
consisting of both the states and controls values, was obtained
with a Direct Pseudospectral Collocation method [15]. The
control scheme used in non-nominal conditions (Closed Loop)
is depicted in Fig. 2. For nominal conditions (Open Loop),
only the reference values of the Thrusts were used in order to
have an open loop controller. The control laws used are listed
in Tab. I. The closed Loop control laws, it was chosen to make
the radial (tangential) component of the thrust only dependant
on the tracking errors of the radial (tangential) quantities, this
to simplify the GP evaluation and reduce the complexity of
the control equations.

TABLE I
OPEN LOOP AND CLOSED LOOP CONTROL LAWS

Open Loop Closed Loop

Tr(t) = Trref (t) Tr(t) = Trref (t) + fGPr (er(t), evr (t))
Tt(t) = Ttref (t) Tt(t) = Ttref (t) + fGPt (eθ(t), evt (t))

V. RESULTS

The code was developed in Python 3 and it relies on the
open source library DEAP [16] for the GP part. All the
simulations were run on a Desktop PC with 8GB of RAM and
an Intel®CoreTM i7-6700 CPU @3.40 GHz x 8 processors
and multiprocessing was used. The used GP algorithm has
been set as follows:

Fig. 2. Simplified Control scheme of modified Goddard Rocket for non-
nominal flight conditions

• Primitives: +,++,−, ∗, tanh ,√., log , exp , sin , cos .
All the primitives are modified in order to avoid
numerical errors.

• Fitness Function: two objectives are simultaneously con-
sidered

1) min fitness1 =
∫
| er(t) | dt

2) min fitness2 = ||constraints violation||2
• Termination Criteria: the evolution process is stopped if

– fitness1 ≤ 0.7 and fitness2 = 0, or
– generation number = 150

• Crossover Rate: 0.2
• Mutation Rate: 0.7
• Elitism Rate: 0.1
The mutation rate is set at 0.7 at the beginning of the

evolution process in order to explore the search space. Then,
when feasible individuals are found (fitness2 = 0), the
mutation rate is decreased by 0.01 and the crossover rate is
increased by the same quantity at each generation, until the
crossover rate reaches the value of 0.65. It is not the aim of this
work to focus on the peculiarities of the used GP algorithm,
hence a pseudo-code is not provided. The code used in this
work can be found at https://github.com/strath-ace/smart-ml.

The approach to IC has been tested on 3 different failure
scenarios representative of real world situations:

1) a sudden failure of a vehicle component, simulated as a
variation of one of the plant parameters;

2) an unforeseen change of the environmental conditions,
through the insertion of a wind gust, which is something
that can heavily affect the performances of a SAV;

3) poor knowledge of the physical models of the envi-
ronment at design phase, which is representative, for
example, of space exploration applications where many
times the environmental models that the spacecraft or the
lander will encounter during its mission are not exactly
defined, but the designers have to use environmental
models obtained through more or less precise observa-
tions.

More on these scenarios is explained in the following.
All figures, from Fig. 3 to Fig. 17, show the altitude r and the
path angle θ profiles, which are the main quantities of interest.



Moreover, the mission is considered successful if the final
values of the altitude and the θ angle are within 1% range
from the reference values.

A. 1st Scenario - Cd variation

In this scenario, a sudden variation in one of the system
parameters is simulated by varying the drag coefficient Cd
from its nominal value 0.6 to a random value at a random
time. The Cd random value is chosen in the interval [0.61, 2],
while the random change time is chosen in the interval [20,
250] s.
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Fig. 3. Altitude profiles for a Cd variation from 0.6 to 1.21 at 142.33 s
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Fig. 4. Detail of the last part of the altitude profile

Figures from 3 to 6 show how a change in Cd from 0.6 to 1.21
at 142.33 s produces a disturbance for the system which is not
able to fulfill the mission (dotted line in Fig. 3). While, with a
control law evaluated through GP the system can successfully
fulfill its mission (diamond marked line), with a difference of
about 300 m between the desired final position and the reached
final position, as in Fig. 4. Regarding θ, its final value is not
deeply affected by the Cd variation, as can be seen from Fig.
5. Nonetheless, Fig. 6 shows that the final θ value using the
GP law is closer to the reference than the one reached with
the open loop control.
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Fig. 5. θ profile for a Cd variation from 0.6 to 1.21 at 142.33 s
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Fig. 6. Detail of the last part of the θ profile

B. 2nd Scenario - Wind Gust

In this scenario, an unpredicted variation of the environmental
conditions has been modelled as a wind gust in a random alti-
tude range, with a random constant speed acting in horizontal
direction. The beginning of the altitude range for the wind gust
was chosen in the interval [0, 40] km and its size was chosen
in the interval [10, 15] km. The wind speed was chosen in the
interval [0, 24] m/s.
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Fig. 7. Altitude profiles for a wind gust of 13.02 m/s applied between 3.11
km and 15.59 km
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Fig. 8. Detail of the last part of the altitude profile for a wind gust of 13.02
m/s applied between 3.11 km and 15.59 km
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Fig. 9. θ profile for a wind gust of 13.02 m/s applied between 3.11 km and
15.59 km
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Fig. 10. Detail of the last part of the θ profile for a wind gust of 13.02 m/s
applied between 3.11 km and 15.59 km

The results depicted from Fig. 7 to Fig. 10 show how the
presence of a wind gust with a speed of 13.02 m/s acting
between 3.11 km and 15.59 km produces a disturbance for
the system which is not able to fulfill the mission (dotted
line). While, with a control law evaluated through GP the
system can successfully fulfill its mission (diamond marked
line). Hence, also for this scenario, the GP control law proved
to be necessary for the successful completion of the mission.

C. 3rd Scenario - Unknown density model

In this last scenario, the lack of knowledge in the environmen-
tal model at design time has been considered. The optimal
trajectory was obtained with the density model in Eq. 2,
while during the ”real mission” the U.S. Standard Atmosphere
Model 1962 (USSA1962) Model is used. The effect of using
a different density model during the flight is shown in Fig. 12
and it is clear how the final altitude will be different than the
reference without a variation of the control law.
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Fig. 11. Altitude profile using the two different density models. The red
dashed line is the altitude profile obtained using the simplified density model
while the black continuous line is the one obtained using the USSA1962
model

Figs. 12 and 13 show a comparison of the 2 different density
models, where the latter shows the comparison on a semi-
logarithmic scale in order to enhance the differences after
20 km. Both figures show the altitude up to 50 km because
for greater altitudes, the density value is so small that is not
interesting anymore. The approach chosen to define a new
density model during the flight consists of performing an
interpolation with a Piecewise Cubic Hermite Interpolating
Polynomial (PCHIP) as follows:

ρnew = f(t, ρold)

with

ρold =

{
ρUSSA1962, 0 ≤ t ≤ teval
ρSimplified, teval < t ≤ tend

Where ρSimplified is the density model in Eq. 2 and teval is
the time at which the GP evaluation starts.
The idea behind this approach is to create a new density
model online using the density data ”measured” during the
flight (ρUSSA1962) and the data predicted by the density model
known at design time (ρSimplified).
Figures from 14 to 17 depict the altitude and θ profile of
the whole trajectory and detail of the last part of it. For the
considered scenario, the density model was evaluated 3 times
and each different model is depicted in Fig. 18 and 19. The
evaluation of a new model was performed every time the
altitude tracking error became greater than 100 m. About the
aforementioned figures:



• Red dashed line: reference trajectory, obtained with the
simplified density model. Simplified model in Fig. 18 and
19.

• Black continuous line: trajectory obtained with the
USSA1962 density model and reference open loop con-
troller. USSA1962 model in Fig. 18 and 19.

• Dark blue line: trajectory performed with the USSA1962
density model and reference open loop controller. It
represents the first part of the flight until a variation in
the tracking errors, greater than a certain threshold, is
detected.

• Light blue line with diamond markers: trajectory per-
formed using density model 0. Model 0 in Fig. 18 and
19.

• Orange line with cross markers: trajectory performed
using density model 1. Model 1 in Fig. 18 and 19.

• Green line with dot markers: trajectory performed using
density model 2. Model 2 in Fig. 18 and 19.
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Fig. 12. Comparison between the density models up to 50 km
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Fig. 13. Comparison between the density models up to 50 km on a semi-
logarithmic scale

D. Statistics

Due to its stochastic nature, GP does not always produce
satisfactory results. Hence, to prove the effectiveness of the
proposed approach, some statistics are presented in Tab. II.
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Fig. 14. Altitude profile in the 3rd scenario. The different markers on the
plot represents the trajectory performed with different density models
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Fig. 15. Detail of the last part of the altitude profile in the 3rd scenario
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Fig. 16. θ profile in the 3rd scenario. The different markers on the plot
represents the trajectory performed with different density models

Here the 3 scenarios previously discussed are presented with
and without learning. More on the learning approach in the
next subsection. In all 3 scenarios the mission was simulated
1000 times, with different random values of Cd, the change
time, the wind speed and the altitude range for the first 2 cases.
About the last case, multiple GP evaluations can be performed
during the same mission. From these statistics it is clear how
the GP evaluation is not always performed within the fixed



TABLE II
STATISTICS OF GP EVALUATIONS PERFORMED ON THE 3 SCENARIOS PRESENTED

Cd Variation Wind Gust Density Model
No Learning Learning No Learning Learning No Learning Learning

GP Evaluations 1000 1000 1000 1000 3153 3108
Fixed time interval 40 s 40 s 100 s 100 s 40 s 40 s
Min evaluation time 4.76 s 2.73 s 6.46 s 8.34 s 3.22 s 1.45 s
Max evaluation time 04h58m20s 01h18m09s 01h36m53s 26m16s 54m49s 01h01m19s
Median evaluation time 14.7 s 5.81 s 88.76 s 22.09 s 38.35 s 28.49 s
Time Constraint Success Rate 61.90% 83.10% 52.60% 90.80% 50.77% 54.89%
Range Constraint Success Rate 71.70% 73.50% 99.80% 100% 79.80% 79.60%
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Fig. 17. Detail of the last part of θ profile in the 3rd scenario
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Fig. 18. Comparison between the different density models used

time interval, as shown by the Time Constraint Success Rate,
and this is due to the high computational cost of GP.
In the last row, the Range Constraint Success Rate quantifies
how many times the GP evaluations produced a satisfying
control law, enabling the system to get, in its final position,
within 1% range from the reference value for both altitude and
θ. According to these data, the proposed approach produces
good results in term of precision over 70% of the times, and
it has a precision of 100% for the 2nd scenario, which might
be the one closer to most real applications.
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Fig. 19. Comparison between the different density models used on a semi
logarithmic scale
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Fig. 20. Detail of time distribution for 1st scenario between 0 and 50 seconds.
For this simulation the median evaluation time was of 14.7 s without learning
and 5.8 s with learning

E. Learning approach

In this work, learning approach means that after one mission
simulation few of the best individuals found during the current
GP evolution were kept and passed to the next mission
simulation. These individuals were then added to the initial
population created randomly at the beginning of each mission.
The maximum size of this pool of well performing individ-
uals was of 300 individuals, while the maximum population
size was set at 500 individuals. This was done in order to
always guarantee that a certain portion of the population was
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learning and 22.09 s with learning
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For this simulation the median evaluation time was of 38.35 s without and
28.49 s with learning

generated randomly to avoid overfitting. As can be see from
Tab. II, in all 3 scenarios the learning approach increased the
performances, both from the range and time constraints point
of views. To better appreciate this improvements, the plots
of the evaluation time against the number of evaluations are
depicted from Fig. 20 to 22. These plots shows the evaluation
time from 0 to 50 seconds for the 1st and 3rd scenarios and
from 0 to 100 s for the 2nd scenario in order to focus more
on the time region that contains the median evaluation time.
From these plots it is clear how the median evaluation time
decreases when using the learning approach and the precise
data are reported in Tab. II.

VI. CONCLUSIONS

A initial approach to Intelligent Control using Genetic Pro-
gramming on 3 different failure scenarios representative of real
situations has been presented. GP was used to autonomously
design online the control law for a modified version of the
Goddard Rocket problem, starting from an optimal trajectory
of reference and without having any other information about
the controller topology. The results obtained for the different
test cases show the big potentialities of the approach and

justify a deeper research in the topic, mainly to investigate
the possibilities of better trade-offs between flexibility and
versatility vs computational time. The issues related to the
computational costs will be mitigated by the advancements
in hardware technologies. However, a better trade-off can
be achieved through improvements of the GP algorithms,
and hybridisation of the approach. In terms of GP, many
techniques can be found in the literature that could have better
performances than the standard version, like Single Node
Genetic Programming or Multi Gene Genetic Programming.
Some of the most promising will be considered for future tests.
Another approach that can be used to improve the efficiency
of the method is through hybridisation of the GP with other
Artificial Intelligence (AI) techniques in order to avoid the
re-evaluation of the whole control law every time using GP
and just optimise it when necessary. This could be done for
example by coupling GP with an Artificial Neural Network
(ANN).
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