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Abstract—Intelligent interfaces are increasingly integrated into
diverse technological areas. In complex high-risk environments,
where humans represent a crucial part of the system and their
attention is often divided between simultaneous activities, immi-
nent human errors may have serious consequences. Enhancing
interfaces with predictive capabilities promotes the safe and
reliable operation of such systems. In this work, we employ a
data-driven approach to predict human errors in a special divided
attention task involving timing constraints and requiring focused
concentration and frequent shifts of attention. We performed a
longitudinal study with 10 subjects, and constructed time series
from the experimental data using gaze movement and mouse
cursor motion features in order to classify successful and failed
actions. We evaluate classical machine learning algorithms, com-
pare them with a more traditional temporal modeling approach
and a deep learning based LSTM model. Employing a leave-one-
subject-out cross-validation procedure we achieve a classification
accuracy of up to 86%, with LSTM presenting the highest
performance. Furthermore, we investigate the trade-off between
evaluation metrics and anticipation window, i.e. the time remain-
ing until the correct action can still be performed. We conclude
that prediction is feasible and accuracy and F1-score increases,
despite the training dataset becoming greatly imbalanced. In-
vestigating the anticipation window allows to understand how
far in advance human errors need to be predicted in order to
initiate preventive measures. Our efforts have implications for the
design of predictive interfaces involving decision making under
time pressure in dynamic divided attention environments.

Index Terms—human error, time series, LSTM, gaze tracking,
anticipation window, predictive interface.

I. INTRODUCTION

Human error is one of the most prominent and important
metrics influencing the performance and efficiency of human-
machine collaboration [1]. It is well-known that humans have a
limited amount of mental resources that can be divided among
simultaneous tasks [2]. In complex dynamic environments and
professions requiring situation awareness, such as automo-
bile drivers, pilots, nuclear power plant operators, airspace
controllers, medical providers or civil emergency operators,
human errors can have serious consequences. Therefore, their
prevention is of crucial importance for the reliable and safe
operation of complex systems.

One of the most important factors affecting human perfor-
mance, shown by a significant amount of research is cognitive
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load [3]. Higher cognitive load leads to an increase in the
number of errors and as a result performance is impaired.
Since eye movements can be used to infer users’ cognitive
states and intentions [4], and the notions of intention and
error are inseparable [5], gaze motion features represent a
useful source of information for predicting near-future errors.
Eye movements can be recorded in a non-obtrusive way and
analyzed in parallel without interfering with the execution of a
task. Although gaze patterns are often predictable, for instance
gaze centers on the object of interest before corresponding
motor movements begin, gaze and cursor coordination can
show complex and nuanced interaction patterns as well [6], [7].
For example, gaze can leave the target area moving on to the
next task before the motor action is completed. Accordingly,
it is not straightforward to anticipate and prevent user errors.

The technological and scientific advances in the last decades
create an opportunity to realize complex systems that monitor
humans and support decision-making. Designing predictive
intelligent interfaces can facilitate the prevention of human
errors and, therefore, enhance user experience and more im-
portantly promote the beneficial interaction between humans
and computers. In this work, we exploit a special divided
attention task that requires continuous focused concentration
and frequent shifts of attention. We define human errors
as missed/failed user actions and attempt to differentiate
them from successful actions using gaze and mouse cursor
movement features. After performing a longitudinal study
with 10 participants, we constructed time series from the
experimental data and formulated the problem as classification.
The definition is illustrated by Fig. 1, which also shows the
properties of the time series we investigate: (i) history and
(ii) anticipation window size, respectively. Since we seek to
predict in advance whether the user will perform the correct
action, a successful action is included into the training set only
if it falls within the anticipation window, i.e. it has not been
performed already at the current time. Therefore, although the
classification problem becomes easier as the prediction time is
closer to the deadline, the training data becomes increasingly
imbalanced as less correct actions are included.

To summarize, the contributions of the present work can be
outlined as follows.

• We employ a data-driven approach for human error pre-
diction in a complex divided attention task, by classifying
time series data constructed using gaze movement and
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Fig. 1. Prediction problem definition and properties of the time series data.
At the current time t we attempt to anticipate whether the user will perform
the correct action before the deadline d. The size of the history window (t-t0)
represents the amount of temporal data used for prediction. The size of the
anticipation window (d-t) denotes how far in advance the prediction is made.

mouse motion features.
• We evaluate classical machine learning algorithms and

compare the results with the traditional dynamic time
warping (DTW) [8], [9] and k-nearest neighbors (kNN)
combination.

• We improve upon our preliminary results [10] with
a simple deep learning based long short term mem-
ory (LSTM) [11], [12] model, which compares favor-
ably against the other approaches and achieves a cross-
validated accuracy of up to 86%.

• We investigate the trade-off between accuracy and an-
ticipation window size, as this latter parameter is de-
creased towards zero and the training data becomes highly
imbalanced. We observe that both accuracy and F1-
score increase significantly, that is, human errors can be
predicted in this case too in our task.

The rest of the paper is organized as follows. Section II
reviews related works concerned with inferring user intentions,
actions and errors, providing a background for the present
study. Section III introduces the divided attention task, sum-
marizes the experiments we performed with 10 participants,
and describes our methodology for computing features and
applying the classification algorithms. Section IV presents our
qualitative findings. In Section V we discuss our results, their
limitations and highlight future directions. Finally, Section VI
concludes the work.

II. RELATED WORK

Related research includes a variety of studies concerned
with inferring and predicting users’ task-related intentions and
goals in order to improve interface usability and enhance user
experience in web-browsing tasks [7], [13], [14], gameplay en-
vironments [15], [16], human-robot collaboration tasks [17]–
[20]. Enhancing situation awareness represents another means
to provide user assistance in manufacturing environments [21],
multiple screen surveillance [22], or driving [23], [24]. This
latter is one of the most widely investigated tasks, and besides
exploring the driver’s level of inattention, involves predicting
future intentions and actions as well to anticipate dangerous
situations [25]–[27]. Anticipating user responses may have
applications in collaborative contexts [28], daily activity log-
ging [29], and mouse interaction tasks in general [30], [31].

The common aspect in most of the works listed is using
eye movements and gaze tracking data as input to predictive
models. Eye tracking measures can also be used to investigate

cognitive load [32], for instance pupil diameter and microsac-
cade magnitude [33], or eye landmarks, pupil trajectories and
eye region images [3]. Estimating cognitive load, and cognitive
processes in general, helps in inferring users’ understanding
and awareness of the current situation, and in predicting the
ability to respond effectively to challenges.

To sum up, a large variety of studies propose to assist
human users in a diversity of tasks aiming from improving
usability and user experience, through sharing autonomy with
robots, enhancing situation awareness, inferring cognitive load,
to predicting actions in advance. Fewer studies address the
problem from a human error perspective, and attempt to
anticipate near future errors. It is important to note that human
errors can also be considered actions, or lack thereof. In any
case, they represent deviation from expectation or intention
and may have serious consequences in safety-critical systems.

Cognitive architectures have been successfully applied to
predict errors in different tasks [34], [35]. However, they use
simulations to estimate aggregate probability, i.e. not when
errors are likely to occur during the execution of the task.
Also, such computational models are sensitive to parameter
changes, which may limit their generalization. Formal models
can be used as well to predict human error (see, e.g., [36] and
the references therein), but they suffer from the state space
explosion problem.

Similar to ours, some works have used a data driven
approach. Ratwani and Trafton investigated the prediction of
postcompletion errors from reaction time and eye movement
measures [37], [38]. However, this type of error occurs after
the main goal has already been accomplished. Accordingly, in
high risk environments failing to complete the main goal may
have serious effects. Damacharla et al. [39] proposed machine
learning models to predict errors in human-machine teaming
systems, but evaluation was performed on synthetic data only.

In the present work we employ a data-driven approach
to classify omission errors and successful user actions in
a novel divided attention task that has not been previously
investigated to the best of our knowledge. This task is highly
dynamic, requiring frequent shifts of attention and fast mouse
cursor movements. As opposed to many other works concerned
with action prediction that simulated one scenario with a
fixed target, there are multiple targets here to be clicked
repeatedly, the user needs to handle simultaneous tasks over 2-
3 minutes and select the appropriate sequence of the targets to
maximize performance. The omission errors in our task result
in performance decrements, and may be equivalent to having
serious consequences in real-world environments where users
are under pressure and time constraints, and their attention is
divided between simultaneous activities. To predict the errors,
we evaluate several classical machine learning algorithms, a
traditional temporal modeling algorithm and a deep learning
based LSTM model, with this latter method achieving the best
performance.



III. METHODS

A. Task, participants and experiments

To analyze human performance, we have designed and
implemented a simplified version of Train of Thought, one
of the most popular Lumosity games. Lumosity1 is an online
training platform comprised of a set of computerized games
designed by scientists, each aiming to train one of five core
cognitive abilities [40]: attention, processing speed, memory,
flexibility and problem solving. Train of Thought is an atten-
tion game that tests users’ visual divided attention and working
memory by requiring them to simultaneously concentrate on
multiple moving objects over 2-3 minutes and direct them to
their correct destinations through mouse clicks. In our custom
version of this divided attention task we have simplified the
graphical design, made efforts to control the complexity of the
game, and kept one variable to manipulate difficulty (namely
the speed of the moving objects) in order to keep players
challenged as they are progressing.

Using our version of the divided attention task, we con-
ducted a longitudinal study with 10 participants aged between
25 and 30 years, who had normal or corrected to normal vision
and reported no attentional disorders nor color deficiency. The
subjects were asked to play with the divided attention task over
a several day period, resulting in 60 trials each. The difficulty
of each gameplay was adjusted based on the score achieved
in the previous trial. Data about experiments was logged for
later analysis, including mouse and eye-gaze movements. For
gaze tracking we used the Tobii EyeX Controller [41] device.
The sampling frequency for all data was 60 Hz.

For a detailed description about the design process of the
divided attention task and the experiments performed, the
interested reader is referred to our previous work [42].

B. Prediction task, features and classification algorithms

Exploiting the data collected in our longitudinal study, we
seek to anticipate omission errors and frame the prediction
problem as binary classification. For an input sample we
consider the time interval before a given deadline in our
divided attention task. This is partitioned into history window
and anticipation window, as shown in Fig. 1, and we attempt
to predict whether the user will manage or fail to complete
the successful click action before the deadline. The history
window size represents the span of the time interval used
for prediction. Anticipation window size denotes the time
remaining until the last possible moment for performing the
successful click action for the given deadline, and illustrates
how far in advance we predict correct/failed click actions.

The historical time series data used for prediction is con-
structed using gaze movement and hand (i.e. mouse cursor)
motion features. The prediction problem is not straightforward,
as human gaze and mouse sequences might show complex and
nuanced interaction patterns [6], [7]. A descriptive snapshot
visualizing one gaze and mouse cursor trajectory is shown in
Fig. 2: the mouse cursor moves towards the target more or less

1https://www.lumosity.com/

Fig. 2. Snapshot of the divided attention task used in the experiments, with 1
second long mouse and gaze trajectory overlaid. The small squares enter the
screen from the big green circle, are moving continuously along the tracks and
need to reach their color matching large square. Gaze and mouse trajectory
are shown with yellow and white, respectively. The black X’s show the current
positions (the user is about to click and correct the direction of the switch
node on the path of the green square), and the red dots are the positions 1
second ago (the user switched for the purple square). For more details about
the divided attention task, see our previous work [42].

straightforwardly, while the gaze scans the scene and leaves
the target before the click action.

The features used for classification are three types of screen
distances that characterize the cursor and gaze movement:

1) gaze-target: distance of the gaze point (screen coordi-
nates of gaze direction) from the target to be clicked,

2) mouse-target: distance of the cursor from the target,
3) gaze-mouse: distance between the gaze point and cursor.

We computed these distances for all frames in a time interval
before deadlines from the experimental data, and use the
resulting multivariate time series for classification.

During our evaluations, we experiment with the different
combinations of the three features, and several values for the
history and anticipation window size, respectively. In each case
we train a new model and report the classification accuracy
values, and employ a leave-one-subject-out cross-validation
scheme where an algorithm is trained on the data of 9 subjects
and evaluated on the test data of the remaining participant; this
procedure is repeated for all 10 possible combinations and the
weighted average performance is computed.

To allow for a consistent presentation of the results, we
define default values for the time series properties. For the
history window size 90 frames (1.5 seconds) is a reasonable
choice. The default value for anticipation window was set to
40 frames (approx. 0.67 seconds), as this results in a balanced
dataset of 2296 positive (failed action, i.e. omission error) and
2293 negative (correct action) samples in total. It is expected
that decreasing the anticipation window makes the prediction
problem easier, but in the same time the training dataset
becomes increasingly imbalanced, as negative samples falling
before the anticipation window have to be dropped. In other
words, it makes sense to predict a correct click action only if
it has not been performed already. Accordingly, the F1-scores
are also reported in this case.

The classical machine learning algorithms evaluated are
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Fig. 3. LSTM network architecture: the input layer is followed by a 1D
convolution layer (with 100 filters of size 20 and ReLU activation function),
max pooling operation (with a pool size of 2), LSTM block (with 100 cells),
dropout layer (with rate 0.5) and finally a dense layer with the sigmoid
activation function.

the scikit-learn [43] implementation of logistic regression
(LR), support vector machines (SVM) with RBF kernel and
random forests (RF). We also experiment with the traditional
temporal modeling algorithm DTW [8], [9]. In this case we
used a kNN approach with the DTW kernel, and tuned the
k hyperparameter to achieve the best possible accuracy. The
multivariate time series vectors were flattened out in the above
cases. Finally, the results are compared to those of a recurrent
neural network, namely an LSTM [11], [12] model. Here,
at each round of the cross-validation, the training data was
split randomly into train and validation sets (a 90%–10% split
was used), with the validation data being used to apply early
stopping and save the best validation weights. The network
architecture is shown in Fig. 3. The batch size during training
was 64 and a maximum number of 200 training epochs was
used applying early stopping with a patience of 20 epochs by
monitoring the validation loss. The LSTM models were trained
via the RMSprop optimizer with a learning rate of 1e–4, using
the Keras [44] library with TensorFlow [45] backend.

IV. RESULTS

Table I shows the results for the different combinations of
the three features. History and anticipation window size was
set to 90 and 40 frames, respectively. Considering the gaze-
mouse distance as the sole predictor gives accuracy values
only slightly above chance level, meaning that the coordinated
movement between subjects’ gaze and the cursor does not
differ significantly among correct and failed click actions. We
can also see that adding the mouse-target distance feature to
the other two predictors results in the largest increases in
accuracy, when compared to the other similar cases. That is to
say, mouse-target distance was found to bring higher accuracy
in all cases than gaze-target distance. The highest performance
was achieved with LSTM with all three features, followed by
kNN with DTW kernel using the gaze-target and mouse-target
features only.

Fig. 4 depicts the accuracy values for each algorithm
separately for the subjects from our experiments. History
and anticipation window size was set to 90 and 40 frames,
respectively. The performance is mostly above 80%, except in
the DTW approach. In general LSTM outperforms the other
methods by a slight margin. More importantly, the variation of
accuracy among participants is not considerably high in case
of the same algorithm.

Fig. 5 illustrates the accuracy values when the history
window size was varied, keeping the anticipation window fixed
at 40 frames. The LR, SVM and RF methods show close
values to each other. The kNN with DTW method shows a
fast drop from 84% at 0.17 seconds to 75% at 2 seconds.
LSTM outperforms the other algorithms and shows a roughly
constant pattern. A general conclusion is that varying the
history window size does not have a significant effect on
accuracy.

The effects of increasing the anticipation window size are
illustrated by Fig. 6. History window size was set to 90 frames.
Clearly the accuracy decreases in all cases as we try to predict
the action of the users more and more in advance. At 2 seconds
the accuracy is only slightly above chance level, i.e. predicting
the user action over 2 seconds in advance is equivalent with
random guessing.

The impact of shrinking the anticipation window towards
zero and obtaining an increasingly imbalanced training dataset
are shown in Fig. 7. Accuracy is inversely proportional to
anticipation window size (Fig. 7a), i.e. prediction performance
increases as the deadline of performing the action is closer.
This is confirmed by F1-score as well in Fig. 7b: the results
outperform a simple majority classifier as the anticipation
window is decreased all the way down to 0.05 seconds, where
the weights of the positive samples are over 90%.

V. DISCUSSION

The dataset used in this study highlights prediction per-
formance in cases when there is only a limited amount of
time left to perform the required click action. Classifying
correct and failed user actions still remains challenging, since
although the gaze and mouse often show predictable and
coordinated movements, complex interaction patterns can also
be observed [6], [7]. For instance the gaze might leave the
target before the click action, or the user might click just a bit
too late right after the last possible moment. These latter cases
are considered failed user actions in our divided attention task.

TABLE I
FEATURE COMBINATION ACCURACY VALUES.

gaze–target X X X X
mouse–target X X X X
gaze–mouse X X X X

LR 77.21 80.98 54.43 81.91 77.84 80.95 83.00
SVM 80.26 83.61 57.90 83.63 81.94 83.05 83.85
RF 80.10 82.35 55.07 83.46 80.78 82.72 84.07
kNN w\ DTW 80.24 83.22 58.40 85.12 75.05 77.40 76.86
LSTM 81.48 84.40 57.38 85.40 83.02 84.48 85.88
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Fig. 4. Accuracy values separately for participants.

We have evaluated several classical machine learning algo-
rithms, one traditional temporal modeling method and a deep
learning based LSTM model for omission error prediction, and
observed that considering longer time sequences for prediction
does not increase accuracy (see Fig. 5). Furthermore, as
expected, the performance drops as we attempt to classify
the user actions more and more in advance (see Fig. 6).
This observable trend may indicate that it is not effective
to predict human errors more than 1.5 seconds in advance
in dynamic environments where user interface operators are
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Fig. 5. Effect of history window size on accuracy.
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Fig. 6. Effect of increasing anticipation window size on accuracy.

under time pressure and high cognitive load. However, it must
be noted that selecting the appropriate anticipation window
size is problem dependent and in highly dynamic environments
where conditions change frequently, it may not be possible to
predict human error many seconds in advance.

Decreasing the anticipation window and using an imbal-
anced dataset for classification had an effect of increased
prediction performance (Fig. 7). However, in realistic scenarios
as the anticipation window gets smaller and the deadline for
performing an action is approaching, the chance of successful
and timely intervention, and the limit of human decision sup-
port as well get closer to zero. In other words, the effectiveness
of prediction is not determined just by algorithm performance
metrics, but by the anticipation window size too, since the
execution time of the prediction itself and of the system
intervention need to be considered in the same time. In specific
safety-critical application scenarios it is crucial to optimize the
trade-off between accuracy and anticipation window, and to
understand how far in advance an error needs to be predicted
in order to provide the needed assistance.

LSTM, capable of capturing long term dependencies [12],
demonstrated the highest performance in all experiments,
despite applying fine-tuning schemes in the case of the kNN
algorithm with DTW kernel. Previous related works have also
investigated LSTM models in various tasks and environments,
such as inferring surgeons turn-taking intentions [20] or basic
manipulation actions [19] in human-robot collaboration, pre-
dicting next mouse click interaction [31], anticipating driving
maneuvers [26] or intent at intersection [27]. Similarly to our
conclusions, they also found promising results with LSTM,
superior against other algorithms, including DTW approaches.

Future works can further improve accuracy by considering
other sensory input modalities, such as capturing electromyo-
graphy and electroencephalography signals similarly to [20].
One novel idea considered by some of the related works is the
adoption of multi-branch LSTM models that learn different
information streams on separate branches and concatenate the
hidden representations before the final output. For example
Kwok et al. called such an approach dual-stream [31], or
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Fig. 7. Effect of decreasing anticipation window size on prediction performance.

Jain et al. sensory-fusion [26] LSTM. We also experimented
with this idea where the input to one branch was the gaze
and mouse interaction features investigated in this study, and
using taskload features – derived from the number of tasks to
be handled – as the input to another branch. Unfortunately this
method did not improve the presented results. Nonetheless, we
are confident that perceived cognitive load or mental workload
measures, derived from electrophysiological or psychophysio-
logical (e.g., changes in pupil diameter) signals or even from
video data [3], represent a useful input stream for improving
prediction performance. For the differences between taskload
and mental workload, see, e.g. [46] and the references therein.
Adopting a multi-branch LSTM model with mental workload
as one of the input temporal streams might require further
experiments with a larger sample size. Additionally, one could
opt to use time-series forecasting instead of classification,
or accumulate consecutive predictions in a sliding window
fashion.

The features we investigated for human error prediction are
general in the sense that they could be applied to other environ-
ments too. Gaze movement features alone can reach reasonable
accuracy, and human motion can be recorded effectively and
in a non-obtrusive way as well. Application areas and domains
for the presented methods and their possible extensions include
healthcare and robotic surgery, air traffic and flight control,
vehicle interfaces, nuclear power plant operation, and critical
decision support systems in general. As a concrete example,
supervising operators can be assisted whose task is to monitor
timed missions of multiple unmanned aerial vehicles [47].

VI. CONCLUSION

In this paper, we analyzed the classification of successful
and failed user click actions in a highly dynamic divided
attention task, requiring frequent shifts of attention and fast
reactions under time constraints. We defined interaction fea-
tures that characterize the gaze movements and mouse cursor
motion of the subjects. Particularly, the distance over time
of the cursor and gaze from the click target and from each
other were considered. We constructed time-series from these,
investigated different parameters for the sequences and evalu-

ated several algorithms. A deep learning based LSTM model
presented superior performance over classical approaches,
achieving a cross-validated accuracy of up to 86%.

We investigated effects on prediction performance of the
anticipation window, i.e. the time remaining before the last
moment when an action can still be performed correctly. This
allows to understand how early a predictor can reach the
correct decision with a predefined accuracy. The further in
advance prediction is performed, the greater the opportunity
for preventive measures. We found that anticipating human
errors in our dynamic task more 1.5 seconds in advance is not
effective, but accuracy and F1-score increase as anticipation
approaches zero, despite the training dataset becoming more
and more imbalanced. Data-driven prediction models in gen-
eral can provide meaningful information to intelligent systems,
so that corrective actions can be taken to prevent human errors.
Such human error prognostics may offer significant benefits to
the sustainment of safety-critical systems. Enhancing user in-
terfaces with predictive capabilities and even giving sufficient
warning may allow preventive maintenance of human error
generated impeding failures, and therefore efficient interaction
with the system.
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visor, for his help in starting this research project. The authors
also thank their colleague, Kinga B. Faragó for her help in
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