Minibatch Processing for Speed-up and Scalability
of Spiking Neural Network Simulation

Daniel J. Saunders*, Cooper Sigrist*, Kenneth Chaney*, Robert Kozma*$, and Hava T. Siegelmann

*

danjsaund@gmail.com, csigrist@umass.edu,
chaneyk@seas.upenn.edu, rkozma@cs.umass.edu, hava@cs.umass.edu
*BINDS Lab, UMass Ambherst, Amherst, MA, USA
tFomoro Al, San Francisco, CA, USA
iGRASP, University of Pennsylvania, Philadelphia, PA, USA
§CLION, University of Memphis, Memphis, TN, USA

Abstract—Spiking neural networks (SNNs) are a promising
candidate for biologically-inspired and energy efficient computa-
tion. However, their simulation is restrictively time consuming,
and creates a bottleneck in developing competitive training
methods with potential deployment on neuromorphic hardware
platforms, even on simple tasks. To address this issue, we provide
an implementation of mini-batch processing applied to clock-
based SNN simulation, leading to drastically increased data
throughput. To our knowledge, this is the first general-purpose
implementation of mini-batch processing in a spiking neural
networks simulator, which works with arbitrary neuron and
synapse models. We demonstrate nearly constant-time scaling
with batch size on a simulation setup (up to GPU memory limits),
and showcase the effectiveness of large batch sizes in two SNN
application domains, resulting in ~880X and ~24X reductions
in wall-clock time respectively. Different parameter reduction
techniques are shown to produce different learning outcomes
in a simulation of networks trained with spike-timing-dependent
plasticity. Machine learning practitioners and biological modelers
alike may benefit from the drastically reduced simulation time
and increased iteration speed this method enables.

I. INTRODUCTION

Research into training SNNs for machine learning (ML)
tasks has rapidly accelerated in recent years [1], [2]. This
is due in part to their impressive computational power [3],
their natural applicability to computation over spatio-temporal
signals [4], their biological plausibility — and, therefore, pos-
sibilities for synergy with neuroscience [5] — along with the
promise of low energy consumption and rapid processing time
once implemented in neuromorphic hardware [6]. Software for
the efficient training of these networks is, however, largely
underdeveloped relative to libraries for the training and de-
ployment of artificial neural networks (ANNs). In particular,
existing solutions do not support the independent, parallel
processing of data through a single network structure.

Due in part to a general lack of mature software infrastruc-
ture, researchers have been hesitant to adopt SNNs for cutting-
edge ML experimentation. As a result, the development of
training algorithms for SNNs has been slow relative to the
proliferation of research on ANNs. With large datasets, and
the complex neural network models needed to process them,
advances in software and hardware technology for ANNs has
been essential for enabling their practical training and appli-

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

cation. In order to bring SNNs to the technological forefront,
similar advances are needed. In this paper, we take another
step towards the practical use of SNNs with a general-purpose
implementation of GPU-enabled minibatch processing. We
argue that SNNs may enjoy similarly widespread applicability
once they are made simpler to build, simulate, and train [7].

Neurons in spiking neural networks [8] are set apart from
those of ANNs in part by their maintenance of simulation
state variables over time, e.g., voltages or refractoriness. That
is, neurons in SNNs are stateful, whereas those typically used
in ANNSs are stateless, with the notable exception of recurrent
neural networks (RNNs), which maintain hidden state over
time. Indeed, SNNs can be seen as a special case of RNNs,
wherein recurrent processing is carried out by dynamic state
variables rather than explicit recurrent connections (although,
such recurrent connections may also be used in SNNs) [9].
Statelessness implies that multiple inputs (i.e., a minibatch
[10]) can be input in parallel to an ANN and processed inde-
pendently without any additional memory overhead. However,
in SNNs and RNNs, where inputs are processed for a length of
time and neurons’ state variables often depend on their values
in the previous time step, there is no choice but to maintain
these variables in memory.

Minibatch processing, both at training and inference time,

has a number of useful properties:

e Reduced simulation wall-clock time: Running multiple
simulations in parallel enables processing more data per
unit wall-clock time than running one at a time. Using a
GPU with enough memory, the amount of data processed
per unit wall-clock time can be expected to increase
approximately linearly with minibatch size.

e Reduced variance in parameter updates: Computing pa-
rameter updates over minibatches results in less noisy
updates than those computed from single examples. This
reduces the effect that outliers have on parameter updates.
On the other hand, for optimization purposes, the noise
resulting from small minibatch sizes may help move a
model out of local minima [11].

o Improved generalization: There is good reason to believe
that, in the small-minibatch regime, stochastic gradient
descent (SGD) improves the generalization performance

of ANNSs [12]. It may be described intuitively as a “bag-
ging” procedure [13], where, by computing parameter
updates based on a minibatch of examples, we enforce
changes that generalize across minibatches.

While mainly useful for machine learning experimentation,
researchers working in biological modeling may also bene-
fit from batched simulation. There is no clear analogue of
minibatch processing in neural circuits: although the brain
is a highly parallel computing device, neural circuits must
process their inputs one at a time. However, this technique
is not meant to mimic biological phenomena, but rather to
increase computational efficiency of the biologically plausible
SNN. To that end, experimenters can use minibatch processing
to simulate multiple, independent trials in order to take trial
averages, gather data, or calibrate parameter settings more
quickly.

In this paper, we describe a general-purpose implementation
of minibatch processing in SNNs. To our knowledge, it is
the first of its kind, although minibatching in restricted situ-
ations has been discussed in prior work. We supplement this
description with a concrete implementation in BindsNET,
an open source SNN simulation library [14]. Written in the
Python programming language on top of the PyTorch deep
learning framework [15], BindsNET was built with ease
of prototyping and machine learning applications in mind.
There is support for processing on CPUs and GPUs, where
on the latter, users may see significant speed improvements
due to the use of minibatch processing. We also provide
experiments which showcase the benefits of using minibatch
processing in SNNs, and discuss the different batch-wise
parameter reduction techniques used in the online learning
setting.

GPUs are well-suited to parallelizing many of the math-
ematical operations needed to simulate spiking networks in
BindsNET, e.g., the matrix multiplication used to compute
the current incident to post-synaptic neurons based on synapse
weights and pre-synaptic spiking activity. In general, opera-
tions where a single instruction can be applied to many pieces
of data can easily be mapped to GPUs and parallelized to a
large degree.

II. RELATED WORK
A. Minibatch processing

To our knowledge, ours is the first general-purpose im-
plementation of minibatch processing in SNN simulation.
Moreover, it is the first to be implemented in an SNN
simulation library, and, importantly, works with all available
neuron and synapse types and training methodologies. Perhaps
the closest to our work is the implementation in NengoDL
[16], which does not support minibatch processing with online
learning rules, i.e., those which compute updates to parameters
concurrently with data processing, a key feature of spiking
neural networks.

The idea of processing with batches of data for the purpose
of training statistical or machine learning models is not a

new one [17]. Indeed, in the original formulation of gradient
descent, updates to fitted parameters are computed over the
entire training dataset. With increasingly large datasets and
limitations on memory, this approach is not always feasible,
and so computing stochastic updates over randomly sampled
batches of data has become standard practice. It has even been
argued that small batch sizes are desirable in some cases,
where it can improve the stability of training and decrease
generalization error on the test data [18].

Several prior works have incorporated bespoke implemen-
tations of minibatch processing for restricted types of SNNs.
[19] describe a binary STDP rule that allows for processing
minibatches of data, although it only considers the precise
timing of neurons’ first spikes, and it involves approximating
spiking neurons as rectified linear units (ReLUs). [20] describe
an unusual spiking neural network model that allows both
positively and negatively signed “spikes” and derive approx-
imations to the back-propagation algorithm, claiming “...in
principle it is possible to do minibatch training”, although their
experiments involve one-by-one processing of data points. [21]
pre-train a convolutional SNN layer-wise with STDP, and fine-
tune the network’s weights for a downstream classification
task with back-propagation on low-pass filtered spike trains.
The networks are trained with minibatch updates, but it is
unclear whether they are computed in parallel, or are instead
computed serially and later averaged to produce a minibatch
update. [22] implement a three-factor learning rule for learning
precise spatiotemporal spike patterns which is computed over
minibatches of data. [23] implement minibatched exact back-
propagation for training spike times and synapse weights in a
network of spiking neurons that emit single spikes.

Other authors have approximated spiking neurons by
smoothing their activation function, so as to incorporate them
into ANNSs to be trained with the back-propagation algorithm
[24], [25]. Here, minibatch processing is obtained for free as
a result of the smooth approximations used. However, it is
difficult to describe the neurons in these networks as “spiking”,
in the sense that they do not fire all-or-nothing pulses in the
event of a voltage threshold crossing.

B. SNN training methodologies

Due to their power efficiency and event-based operation,
research into methods for training SNNs for machine learning
tasks has accelerated. Their non-differentiability, due to the
all-or-nothing, discontinuous nature of spiking neurons, has
made it impossible to train them with the popular back-
propagation algorithm. To deal with this, several general
training approaches have been developed for SNNs, to all of
which minibatch processing is applicable. We review a number
of the most well-known approaches:

e Local learning rules: Local learning rules [26],
[27], such as Hebbian learning [28] and spike-timing-
dependent plasticity (STDP) [29], [30], operate by up-
dating synaptic strengths as a function of pre- and post-
synaptic neural activity and possibly a third, global factor
such as dopamine or other neuromodulators [31]. In the

TABLE I: Comparison of ANN and converted SNN error rates
on popular computer vision benchmarks. All results are taken
from [36], which reports the lowest conversion error rates
across all datasets to date.

Dataset | ANN error | SNN error
MNIST [40] 0.56% 0.56%
CIFAR-10 [41] 8.09% 9.15%
ImageNet [42] 23.88% 25.40%

context of minibatch processing, updates to synapses can
be reduced across the minibatch dimension, effectively
increasing the speed of learning and possibly decreasing
the step-by-step variability of weight changes.

« Rate-based gradient methods: In this setting, the tem-
poral aspects of spikes are ignored, and firing rates are
considered in lieu of precise spike timing or ordering.
Firing rates are often continuous with respect to neuronal
inputs, and can therefore be used in back-propagation
calculations [20], [24], [32].

o Surrogate gradient methods: These methods provide an
approach for overcoming the difficulties associated with
the spiking discontinuity by providing an approximating
surrogate gradient for the neuron’s spiking nonlinearity
[4], [9], [22], [33]. Networks are then trained with gradi-
ent descent. One such work argues that their derived rule
could be used in minibatch updates [22].

« Differentiable approximations: Several prior works
[24], [25] have devised differentiable approximations
to spiking neuron models and incorporated them into
artificial neural networks. These networks may be trained
with minibatch updates, as they ignore the temporal
dynamics of spiking neurons [24], or incorporate them
into recurrent ANNs [25].

e ANN to SNN conversion: A recent thread of research
into deploying spiking neural networks on neuromorphic
hardware involves the conversion of trained ANNs to
SNNs with little or no loss in performance on classifi-
cation [34]-[38] and reinforcement learning [39] tasks.
ANNSs are trained with a variant of minibatch gradient
descent, but, once converted to SNNs, these works do not
apply minibatch processing. See Table I for a comparison
of error rates between ANNs and their converted SNN
counterparts, demonstrating that, in principle, SNNs may
perform just as well on complex classification tasks as
ANNSs can.

III. IMPLEMENTATION

Since certain neuron and synapse models in SNNs maintain
various stateful quantities during simulation, for a minibatch
size B, our implementation duplicates these variables B
times at the start of a simulation. During simulation, these
time-sensitive variables evolve independently across the batch

dimension. Quantities that are not stateful are not duplicated,
such as rest and reset voltages, fixed thresholds, voltage decay
rates, etc. Adaptive parameters such as connection weights
(synaptic strengths) and adaptive voltage thresholds are up-
dated during simulation, but there is only one copy of each of
these parameters; updates to them are aggregated across the
batch dimension via averaging, summation, or possibly many
other reductions, which we will later discuss.

A. Dynamic minibatch size

Adaptive minibatch sizes are supported. Changes in mini-
batch size may occur when moving from training to inference;
e.g., large amounts of training data may be bundled into
minibatches to expedite training, whereas at inference time,
queries to the trained SNN may occur one at a time as
needed. It may also change when the size of a dataset is not
evenly divisible by the minibatch size, and so the last batch of
examples will be smaller than the rest. Adaptive minibatch size
is implemented by checking the batch size of an input against
the expected batch size; if it is different, state variables are
re-initialized to match it, and simulation proceeds as normal.

B. Episodic vs. continuing simulation

Implicit in our discussion thus far is a reliance on episodic,
trial-based experimentation. Between trials (processing a mini-
batch of size B for time T), time-sensitive neuronal state vari-
ables must be reset to common values; otherwise, we are not
performing B independent simulations with the same initial
conditions. This setup is well suited to many machine learning
tasks: unsupervised, supervised, and episodic reinforcement
learning proceed on a example-by-example or episode-by-
episode basis.

However, if the user is comfortable with relaxing the as-
sumption of identical initial conditions, continuing simulations
may be used, where input data may change over time without
requiring the re-initialization of state variables. This is well-
suited for cases where said state variables are relatively
transitory, and when their initial conditions don’t have a strong
effect on the measured simulation outcomes. For example,
after a short simulation time, neuron voltages may change
quite rapidly, and it is difficult to guess at their initial values.
Continuing simulation may be used for batched continuing
reinforcement learning, or for SNN simulations which have
no natural notion of “resetting”.

C. Reduction methods

It is common practice to average updates to an ANN’s
parameters over the batch dimension. Every neuron in an ANN
participates during the network’s forward pass, and averaging
the weight updates over the batch dimension results in an
unbiased estimate of its derivative with respect to the loss
function. The neurons of spiking neural networks, on the
other hand, output non-zero values (spikes) relatively sparsely
in time, which often trigger parameter updates that have
no bearing on a global loss function. Therefore, averaging
parameter updates over the batch dimension may result in

overly conservative parameter updates and slow learning due
to the presence of many zero values in the average, and which
can be avoided when not training with gradient descent.

For this reason, our implementation supports arbitrary re-
duction methods, namely, those that process PyTorch tensors
and may be used to reduce the minibatch dimension. Custom
reduction methods may be written by users as long as they
support this simple API. By default, parameter updates are
averaged over the batch dimension. As we will discuss, dif-
ferent applications may benefit from using different reduction
methods.

D. Complexity

Duplicating stateful variables across the batch dimension
may quickly consume memory. For per-neuron variables (e.g.,
membrane voltage), assuming a minibatch size of B and a
neuron population of size N, O(BN) memory is required. For
per-synapse variables (e.g., synapse conductances), assuming
pre- and post-synaptic neuron populations of size Ny and
Npost, respectively, O(B Nyre Npost) is needed. Multiple stateful
variables per network component may need to be extended
across the batch dimension, the number of which generally
increases with the complexity of the neuron or synapse model.
Users must be wary of setting batch sizes such that the total
memory usage is greater than what is available, so as to
prevent frequent swapping of tensors in and out of memory
or triggering out-of-memory errors. As a result, in comparison
with ANNs, minibatch processing in SNNs is fundamentally
more memory-intensive due to the use of stateful, time-
dependent variables.

It is well-established that GPUs are suited for highly parallel
processing due to their large number of cores, which all
execute the same instructions simultaneously. For this reason,
we expect that the wall-clock time for a given simulation
with an SNN of fixed size will remain roughly constant
with increasing batch size, up until the point where network
variables no longer fit into GPU memory, at which point
simulation time will increase as tensors will needed to be
swapped in and out of GPU memory. This will be shown
empirically in IV.

IV. EXPERIMENTS

In the following, we describe a few simple experiments
aimed at communicating the usefulness of the minibatch
processing approach to SNNs simulation. We investigate the
scaling of a simple two-layer network to increasing output
layer and minibatch sizes. We then show how a simple multi-
layer perceptron converted to a near-equivalent SNN can
maintain accuracy and classify test data increasingly rapidly
with increasing batch size. Finally, SNNs of fixed size are
trained in an semi-supervised fashion to classify the MNIST
dataset, effective for a wide range of minibatch sizes. Unless
otherwise stated, a 1ms simulation time resolution is used.

A. Scaling a Two Layer Network

We construct a simple two layer network consisting of 100
input neurons with Poisson spike trains with rates randomly

Scaling comparison

10t
—+— 10 neurons
—+- 10 neurens + STDP >
—+— 100 neurons /
=+= 100 neurons + STDP /
. —+— 1000 neurons /
) —+- 1000 neurons + STDP 4
v Fd
E p
= /7
v 7/
o 4
= Vi
v 4
— 4
© /s
= _ N
10° e e e e e o D T e e e
1 2 4 8 16 32 64 128 256 512 1024

Batch size

Fig. 1: Wall-clock time of a 1s simulation vs. batch size with
varying numbers of output neurons, with and without STDP.
10 independent trials are run on a GeForce GTX TITAN X,
and their average time + one standard deviation is reported.
Increase in simulation time for large networks and batch sizes
is due to running out of GPU memory (12GB).

sampled in [0Hz, 120Hz] connected to a variable-sized layer
of leaky integrate-and-fire (LIF) neurons [43] with synapse
weights randomly sampled from AN(0.1,0.01). Varying the
minibatch size, we run the network for 1 second of simulated
time in 10 independent trials and report the statistics of the
required wall-clock time.

Figure 1 depicts the results for networks with a variable
number of output neurons, with or without training the synapse
weights with a simple online STDP rule. In all cases, simula-
tion wall-clock time remains roughly constant for small- and
medium-sized batch sizes, but begins to grow quickly as the
batch size grows large. This is due to running out of GPU
memory (12GB) with larger network and minibatch sizes and
using STDP. Learning with STDP incurs a higher memory and
computational cost, from recording the “spike traces” in the
pre- and post-synaptic populations required for online STDP,
and from computing weight updates and reducing them across
the batch dimension.

B. ANN to SNN conversion

Following the methodology of [36], we first train a 3-
layer multi-layer perceptron to classify the MNIST data and
convert it to an SNN with little loss in performance. The
network has hidden layers with sizes of 256 and 128 and ReLU
activations. It is converted into a spiking neural network with
identical architecture, except that the ReLU non-linearities are
approximated by the firing rates of (non-leaky) integrate-and-
fire (IF) neurons with reset by subtraction. That is, instead of
resetting neuron voltages back to a baseline value after a spike
(typically zero), the difference between the firing threshold
and baseline value is subtracted off the neuron’s voltage. This
ensures that, if a neuron exceeds its threshold by some amount,

TABLE II: Simulation time per example vs. overall accuracy
on the MNIST test dataset. The original MLP achieves 98.13%
accuracy.

10ms
97.86%

Sms
97.73%

4ms
97.62%

3ms
97.30%

2ms
94.03%

1ms

29.37%

Time
Accuracy

that amount is not lost by the resetting mechanism. To derive
a classification decision from the network, we sum the inputs
to the final layer (with size equal to the number of classes)
over the simulation run, and take the label corresponding to
the maximizing argument.

Accuracy of the converted SNN compared to the original
ANN is given in Table II. The ANN achieves 98.13% test
accuracy, while the SNN with 10ms inference time achieves
97.86%, a 0.27% reduction. With 3ms of simulation time, the
converted SNN already achieves 97.30% accuracy. Setting the
simulation time higher than 10ms does not result in better
performance (data not shown). Figure 2a plots the wall-clock
time required to run inference in the converted SNN on the
entire MNIST test dataset (10K images). With batch size 1
(serial processing) and 10ms of simulation time, inference
takes over 11 minutes. On the other hand, with batch size 1024,
this same procedure takes ~0.75 seconds, a ~880X reduction
in wall-clock time. Finally, inference time per minibatch for
various settings of batch size and simulation time is plotted
in Figure 2b. For small batch sizes, each simulation time step
takes <0.01s, while for larger batch sizes, each step requires
between 0.01 and 0.1 seconds. A single simulation step with
batch size 1 requires just over 1ms of wall clock time, running
nearly in “real time”.

C. Unsupervised Learning of MNIST digits

We implemented a slightly modified, minibatched version
of the experimental setup from [44]. The considered SNN
consists of an input layer with dimensionality equal to the
input data, in this case, the MNIST digits, with shape 28 x28.
The input data is encoded into Poisson spike trains with firing
rates in [OHz, 128Hz], obtained by dividing the pixel-wise
input data by 2. This layer connects all-to-all with STDP-
modifiable synapses to a population of Npeyrons LIF neurons
with adaptive thresholds, which increase by 0.05mV each time
a spike is emitted, and are otherwise decaying back to their
default value with a time constant of 1000ms. This layer is
recurrently connected with large, fixed inhibitory synapses,
which is used to implement a soft winner-take-all (WTA)
circuit: when a neuron in this layer spikes, all other neurons
in the layer are inhibited, allowing it to continue spiking
unchallenged. Accordingly, we use an online version of STDP
(i.e., weight updates are made during simulation) which uti-
lizes only positive weight updates triggered by the firing of
the post-synaptic neuron, along with a weight normalization
technique such that the sum of weights incident to a post-
synaptic neuron remains constant. We implement a simple
classification scheme on the output of the network; namely,
individual neurons are assigned labels according to the class

of data for which they fire most for during training. At test
time, spikes are counted per neuron and aggregated into class-
wise bins. The bin with the largest count determines the label
of the input data.

Fixing 7pewrons = 100 and varying the batch size in
[1,2,...,256], we investigate how the originally serial method
performs in the minibatched setting. Output neurons are re-
labeled and accuracy on the test dataset is assessed after
every 250 training examples. With larger batch sizes, the
network fails to learn to classify the data with the default
parameter reduction: averaging parameter updates across the
minibatch dimension (data not shown). On the other hand,
Figure 3a shows that this issue can be partially mitigated
by utilizing a different parameter reduction method: taking
the per-parameter (synapse) maximum on each time step
(the “maximum” method). With this reduction, the networks
achieve a comparable maximum test accuracy regardless of
batch size.

We conjecture this mismatch in accuracy is due to there
being more examples per minibatch then there are output
neurons; as described above, one neuron typically “wins” per
example in the soft WTA. Therefore, with more inputs than
neurons, there must exist at least one neuron which fires for
two or more different examples in the minibatch, leading to
conflicting weight updates that may cancel each other out.
Using the per-parameter maximum partially solves this prob-
lem by discarding smaller weights updates, allowing the larger
updates to coalesce and enabling learning of coherent synapse
weights. Still, there is a non-negligible loss in accuracy with
moderately large batch sizes, and this problem is exacerbated
with increasingly larger batch sizes (data not shown). An
interesting direction of future work is to investigate training
methods that are more robust to the choice of batch size.

Figure 3b compares the wall-clock time required to reach
80% accuracy with the same network trained with various
batch sizes. In particular, with batch size 1, nearly 12 minutes
is required to reach this accuracy level. With batch size 64,
less than 30 seconds are needed, a ~24X speedup, with only
a small loss in maximum performance. Figure 4 compares
the weights learned with different settings of the batch size.
Importantly, visual inspection reveals very few qualitative
differences between the learned filters. This suggests that, with
proper tuning of the hyper-parameters of the classification part
of the method, networks trained with larger minibatch sizes
may attain classification performance equal to that of the serial
method.

V. DISCUSSION

Our implementation can be extended to arbitrarily com-
plex neuron and synapse models. The user may subclass
BindsNET’s Nodes or Connection objects, and then
specify which neuronal variables need to be duplicated across
the batch dimension. As discussed before, per-synapse vari-
ables typically require more memory than per-neuron vari-
ables, and each batched variable will require its own memory
resources. For this reason, networks with simplistic neuron

Test set inference time: simulated vs. wall-clock

102

10t

Wall-clock time (s)

Simulated time (ms)

(a) Test set inference time

Time per minibatch: simulated vs. wall-clock

1071
O
= /
=
(1]
2 —
@ 1
o
° 2
E 4
< 10 0
= 10 — 16
[=]
° — 2
= — 64
3
= — 128
— 256
— 512
— 1024
1 2 3 4 5 10

Simulated time (ms)

(b) Batch inference time

Fig. 2: (a) Wall-clock time required to classify the test dataset with the converted SNN with various settings of batch size and
simulation time. (b) Inference time for a single batch of data for various settings of batch size and simulation time.

Accuracy comparison: maximum parameter reduction

Test accuracy

0K 10K 20K 30K 40K

No. of training examples (1 epoch)

50K

(a) Parameter reduction: maximum

Minibatch time vs. convergence speed

Wall clock time to 80% accuracy (m)

-
na
S

8 16 32 64 128 256
Minibatch size

(b) Wall-clock time comparison

Fig. 3: (a) Accuracy curves for networks with ngeurons = 100 over the course of training for various settings of batch size,
with parameter updates computed by taking the maximum of individual contributions over the minibatch dimension. Accuracy
curves are smoothed with a Hann filter of length 10. Wall-clock time needed to reach 80% test set accuracy is plotted in (b).

and synapse types can often be enlarged and parallelized to a
greater degree than networks with more complex components.

Although our focus in the exposition and experiments of
this paper has been on GPU-based simulation, minibatch pro-
cessing can also be used with CPUs. However, the reductions
in wall-clock time from using this approach are much less
drastic than simulating with GPUs.

For any given task, the careful selection of a reduction of
parameter updates across the minibatch dimension may be
needed to achieve the desired learning outcome. In online
learning rules, since synapse weights are triggered in an event-
based fashion, these may be sparse in time, so taking the
average update among many zeros may result in slow learning.

For that reason, users are free to select or implement reduction
methods that suit their particular learning problem.

VI. CONCLUSION

Spiking neural networks are rapidly becoming viable tools
for investigations into powerful, biologically plausible forms
of machine learning [1]. While processing batches of data
in parallel in real neural circuits may not be plausible, in
simulation, it is essential in order to make reasonable training
times feasible. To date, the bulk of simulation has been
implemented as serial processes, which often does not scale to
large datasets: the speed of research iteration is extremely low
due to the high cost of running even a single pass through the
data. Thus, we have introduced and demonstrated the utility

S =D N) WO

QO£ O

Fig.

qJ 8 0967 72§ 23550175
665303203 819 36013

2902066570 2142797407
RE8CIy2s 3663826079C¢
6 2 3y36 3562699373
> 64237893 5¢ 90799 <
93794717 /78 075190693
255516897 76€009/7890¢
283702867 2230728066%
3209134995 922049051512

(a) Batch size = 1 (b) Batch size = 256

4: Visualization of filter weights learned by networks

trained with the “maximum” reduction method and (a) serial
updates (batch size 1) and (b) a large degree of data parallelism
(batch size 256).

of a general-purpose implementation of minibatch processing
in SNNs that can be leveraged to reduce simulation run-times
and increase the speed of iteration of research ideas. With
enough GPU memory and the proper choice of minibatch
size, the wall-clock time of any simulation can be significantly
reduced while preserving or improving learning capabilities;
we believe this is an important technological milestone in the
effort to leverage spiking neural networks in modeling studies
and machine learning experiments alike.

ACKNOWLEDGEMENTS

This work has been supported in part by grant of

the

Defense Advanced Research Project Agency Grant,

DARPA/MTO HRO0011-16-1-0006.

[1]

[2]

[3]

[5]

[6]

[8]

REFERENCES

M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons:
Opportunities and challenges,” Frontiers in Neuroscience, vol. 12, p.
774, 2018. [Online]. Available: https://www.frontiersin.org/article/10.
3389/fnins.2018.00774

A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, “Deep learning in spiking neural networks,” Neural
Networks, vol. 111, pp. 47 — 63, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608018303332
W. Maass, “Lower bounds for the computational power of networks of
spiking neurons,” Neural Computation, vol. 8, no. 1, pp. 1-40, 1996.
[Online]. Available: https://doi.org/10.1162/nec0.1996.8.1.1

Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal
backpropagation for training high-performance spiking neural networks,”
Frontiers in Neuroscience, vol. 12, p. 331, 2018. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2018.00331

A. H. Marblestone, G. Wayne, and K. P. Kording, “Toward
an integration of deep learning and neuroscience,” Frontiers in
Computational Neuroscience, vol. 10, p. 94, 2016. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fncom.2016.00094

D. S. Jeong, “Tutorial: Neuromorphic spiking neural networks for
temporal learning,” Journal of Applied Physics, vol. 124, no. 15, p.
152002, 2018. [Online]. Available: https://doi.org/10.1063/1.5042243
Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct training
for spiking neural networks: Faster, larger, better,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp.
1311-1318, Jul. 2019. [Online]. Available: https://aaai.org/ojs/index.
php/AAAV/article/view/3929

W. Maass, “Networks of spiking neurons: The third generation of
neural network models,” Neural Networks, vol. 10, no. 9, pp. 1659 —
1671, 1997. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0893608097000117

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

(271

[28]

E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in
spiking neural networks,” CoRR, vol. abs/1901.09948, 2019. [Online].
Available: http://arxiv.org/abs/1901.09948

P. Goyal, P. Dollar, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
SGD: training imagenet in 1 hour,” CoRR, vol. abs/1706.02677, 2017.
[Online]. Available: http://arxiv.org/abs/1706.02677

L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proceedings of COMPSTAT’2010, Y. Lechevallier and
G. Saporta, Eds. Heidelberg: Physica-Verlag HD, 2010, pp. 177-186.
T. A. Poggio, K. Kawaguchi, Q. Liao, B. Miranda, L. Rosasco, X. Boix,
J. Hidary, and H. Mhaskar, “Theory of deep learning III: explaining
the non-overfitting puzzle,” CoRR, vol. abs/1801.00173, 2018. [Online].
Available: http://arxiv.org/abs/1801.00173

L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,
pp. 123-140, Aug 1996. [Online]. Available: https://doi.org/10.1007/
BF00058655

H. Hazan, D. J. Saunders, H. Khan, D. Patel, D. T. Sanghavi,
H. T. Siegelmann, and R. Kozma, “Bindsnet: A machine learning-
oriented spiking neural networks library in python,” Frontiers
in Neuroinformatics, vol. 12, p. 89, 2018. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fninf.2018.00089

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in NIPS Autodiff Workshop, 2017.

D. Rasmussen, “NengoDL: Combining deep learning and neuromorphic
modelling methods,” arXiv, vol. 1805.11144, pp. 1-22, 2018. [Online].
Available: http://arxiv.org/abs/1805.11144

D. P. Bertsekas, “Incremental least squares methods and the extended
kalman filter,” SIAM J. on Optimization, vol. 6, no. 3, pp.
807-822, Mar. 1996. [Online]. Available: http://dx.doi.org/10.1137/
S$1052623494268522

D. Masters and C. Luschi, “Revisiting small batch training for
deep neural networks,” CoRR, vol. abs/1804.07612, 2018. [Online].
Available: http://arxiv.org/abs/1804.07612

P. Ferré, F. Mamalet, and S. J. Thorpe, “Unsupervised feature
learning with winner-takes-all based stdp,” Frontiers in Computational
Neuroscience, vol. 12, p. 24, 2018. [Online]. Available: https:
/Iwww.frontiersin.org/article/10.3389/fncom.2018.00024

P. O’Connor and M. Welling, “Deep spiking networks,” CoRR, vol.
abs/1602.08323, 2016. [Online]. Available: http://arxiv.org/abs/1602.
08323

C. Lee, P. Panda, G. Srinivasan, and K. Roy, “Training deep spiking
convolutional neural networks with stdp-based unsupervised pre-training
followed by supervised fine-tuning,” Frontiers in Neuroscience, vol. 12,
p. 435, 2018. [Online]. Available: https://www.frontiersin.org/article/10.
3389/fnins.2018.00435

F. Zenke and S. Ganguli, “Superspike: Supervised learning in
multilayer spiking neural networks,” Neural Computation, vol. 30,
no. 6, pp. 1514-1541, 2018, pMID: 29652587. [Online]. Available:
https://doi.org/10.1162/neco_a_01086

I. M. Comsa, K. Potempa, L. Versari, T. Fischbacher, A. Gesmundo, and
J. Alakuijala, “Temporal coding in spiking neural networks with alpha
synaptic function,” ArXiv, vol. abs/1907.13223, 2019.

E. Hunsberger and C. Eliasmith, “Training spiking deep networks for
neuromorphic hardware,” CoRR, vol. abs/1611.05141, 2016. [Online].
Available: http://arxiv.org/abs/1611.05141

D. Huh and T. J. Sejnowski, “Gradient descent for spiking
neural networks,” in Advances in Neural Information Processing
Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc.,
2018, pp. 1433-1443. [Online]. Available: http://papers.nips.cc/paper/
7417-gradient-descent-for-spiking-neural-networks.pdf

R. Linsker, “Local synaptic learning rules suffice to maximize
mutual information in a linear network,” Neural Computation,
vol. 4, no. 5, pp. 691-702, 1992. [Online]. Available: https:
//doi.org/10.1162/neco.1992.4.5.691

S. Zappacosta, F. Mannella, M. Mirolli, and G. Baldassarre, “General
differential hebbian learning: Capturing temporal relations between
events in neural networks and the brain,” PLOS Computational
Biology, vol. 14, no. 8, pp. 1-30, 08 2018. [Online]. Available:
https://doi.org/10.1371/journal.pcbi. 1006227

D. O. Hebb, The organization of behavior: A neuropsychological theory.
New York: Wiley, Jun. 1949.

[29]

[30]

(31]

[33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]
[41]
[42]
[43]

[44]

H. Markram, J. Liibke, M. Frotscher, and B. J. Sakmann, “Regulation of
synaptic efficacy by coincidence of postsynaptic aps and epsps.” Science,
vol. 275 5297, pp. 213-5, 1997.

G.-q. Bi and M.-m. Poo, “Synaptic modifications in cultured
hippocampal neurons: Dependence on spike timing, synaptic strength,
and postsynaptic cell type,” Journal of Neuroscience, vol. 18, no. 24,
pp. 10464-10472, 1998. [Online]. Available: https://www.jneurosci.
org/content/18/24/10464

N. Frémaux and W. Gerstner, “Neuromodulated spike-timing-dependent
plasticity, and theory of three-factor learning rules,” Frontiers
in Neural Circuits, vol. 9, p. 85, 2016. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fncir.2015.00085

E. Stromatias, M. Soto, T. Serrano-Gotarredona, and B. Linares-
Barranco, “An event-driven classifier for spiking neural networks
fed with synthetic or dynamic vision sensor data,” Frontiers
in Neuroscience, vol. 11, p. 350, 2017. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2017.00350

S. B. Shrestha and G. Orchard, “Slayer: Spike layer error
reassignment in time,” in Advances in Neural Information Processing
Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc.,
2018, pp. 1412-1421. [Online]. Available: http://papers.nips.cc/paper/
7415-slayer-spike-layer-error-reassignment-in-time.pdf

P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer, “Fast-
classifying, high-accuracy spiking deep networks through weight and
threshold balancing,” in 2015 International Joint Conference on Neural
Networks (IJCNN), July 2015, pp. 1-8.

B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu,
“Conversion of continuous-valued deep networks to efficient event-
driven networks for image classification,” Frontiers in Neuroscience,
vol. 11, p. 682, 2017. [Online]. Available: https://www.frontiersin.org/
article/10.3389/fnins.2017.00682

B. Rueckauer and S. Liu, “Conversion of analog to spiking neural
networks using sparse temporal coding,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2018, pp. 1-5.

A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going
deeper in spiking neural networks: Vgg and residual architectures,”
Frontiers in Neuroscience, vol. 13, p. 95, 2019. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2019.00095

L. Zhang, S. Zhou, T. Zhi, Z. Du, and Y. Chen, “Tdsnn: From
deep neural networks to deep spike neural networks with temporal-
coding,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, no. 01, pp. 1319-1326, Jul. 2019. [Online]. Available:
https://aaai.org/ojs/index.php/AA Al/article/view/3931

D. Patel, H. Hazan, D. J. Saunders, H. T. Siegelmann, and
R. Kozma, “Improved robustness of reinforcement learning policies
upon conversion to spiking neuronal network platforms applied to
ATARI games,” CoRR, vol. abs/1903.11012, 2019. [Online]. Available:
http://arxiv.org/abs/1903.11012

Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

W. Gerstner and W. Kistler, Spiking Neuron Models: An Introduction.
New York, NY, USA: Cambridge University Press, 2002.

P. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in Computational
Neuroscience, vol. 9, p. 99, 2015. [Online]. Available: https:
/Iwww.frontiersin.org/article/10.3389/fncom.2015.00099

