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Foreword 

This volume contains all the papers presented at MARS-2007 (3rd 
International Workshop on Multi-Agent Robotic Systems), held in 
Angers/France, in May 2007, as a satellite workshop of the ICINCO-2007 
conference (International Conference on Informatics in Control, Automation and 
Robotics) which was co-organized by INSTICC (Institute for Systems and 
Technologies of Information, Control and Communication) and the 
University of Angers. 

The 3rd International Workshop on Multi-Agent Robotic Systems intends to be 
a forum for the debate of issues concerning all kinds of theoretical and 
applied studies combining the interdisciplinary areas of multi-agent 
systems and robotics, with communicating agents, flexibly materialized in 
either software or hardware - the latter as mobile robots. The workshop 
papers included in these proceedings spread across a number of topic 
areas including the following: autonomous and emergent formations, 
swarm robotics, cooperative robotics, human-robot communication and 
coordination, mobile robot teams, maps and navigation, robotic soccer 
and other types of multi-agent system aspects related to robotics, like 
agent-oriented design, evolution and self-recovery, behavior planning and 
task allocation, distributed administration and maintenance, mission 
reliability and simulation, artificial intelligence, targets search, sensing, 
convergence, and others. After a double blind review process a total of 9 
papers out of 17 submitted were selected for oral presentations, arranged 
in 3 sessions of a single track program; 3 were selected as poster 
presentations.  

We would like to express our sincere gratitude to all the authors, who 
provided the rich material discussed at the workshop, and the members of 
the Program Committee who have reviewed and assessed the scientific 
merit of each submitted paper, thus ensuring high quality standards. Last 
but not least, thanks to Marina Carvalho for her effort in the secretariat 
support, and to Bruno Encarnação and Vitor Pedrosa for producing the 
proceedings. 
 
Joaquim Filipe 
Polytechnic Institute of Setúbal / INSTICC, Portugal 
 
Peter Sapaty 
Institute of Mathematical Machines and Systems, NAS, Ukraine 
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A Hybrid Dynamic Task Allocation Approach for a 
Heterogeneous Multi-Robot System 

Yan Meng and Kashyap Shah 

Department of Electrical and Computer Engineering 
Stevens Institute of Technology, Hoboken, NJ 07030, USA 
yan.meng@stevens.edu, kshah18@stevens.edu  

Abstract. In this paper, we propose a communication-efficient hybrid task 
scheduling algorithm for a heterogeneous multi-robot system under dynamic 
unknown environment, where each robot makes its own decision through com-
municating with others as well as checking a global task status queue. The pro-
posed hybrid algorithm takes advantage of centralized approaches to improve 
the overall system efficiency and distributed approaches to reduce the commu-
nication overhead, which automatically leads to a reasonable reduction of 
power consumption. This algorithm avoids unnecessary communication by 
broadcasting global information which is in everybody’s interest and mean-
while limits specific information which is in interest of some specific robots 
only. In addition, each robot would dynamically allocate the task to robots 
which are capable and most available. This feature makes the system robust 
against communication failures and robot failures. Simulation results demon-
strate the efficiency and robustness of the proposed approach. 

1 Introduction 

With growing need of building reliable real-time applications coupled with advance-
ment of high-speed networks and high-performance computers, in the past decade 
heterogeneous multi-robot systems have been increasingly used for many real-time 
applications, like urban search and rescue, surveillance, hazardous materials detec-
tion, and reconnaissance, in which the correctness of the systems depend not only on 
the results of a computation, but also on the time which these results are produced [1]. 
To achieve real-time performance of such a complex system, an efficient task alloca-
tion and coordination among the team members is required. Vali Veloso stated in [2] 
that team performance can be drastically increased if the team coordinates well and 
the information is being shared by all teammates in a multi-robot environment. 

Dynamic task allocation for multi-robot systems under dynamic environment is a 
challenging problem, which aims to efficiently finish all of unknown tasks as fast as 
possible while keep the cost as low as possible.  Although some algorithms have been 
proposed to tackle this problem, such as auction-based algorithm like MURDOCH 
[3][4], behavior-based algorithm like ALLIANCE [5][6], and instantaneous greedy 
scheduler based approaches, all of these available methods have a great deal of 
broadcast communication overhead to share information with all of team members. 



Some of available algorithms are only good for a homogeneous robot team with one 
global task like mapping or exploration of an area, and some of them don’t take con-
sideration of system robustness in the case of communication failure or robot mal-
functions.  

In this paper, we aim at investigating a task scheduling algorithm for a heteroge-
neous multi-robot system under dynamic unknown environment. As we know, a cen-
tralized approach consists of making all decisions in one place, where all the tasks to 
be performed are collected by a central scheduler. This centralized scheduler decom-
poses tasks into programs of actions, order actions when necessary and assigns them 
to robots with respect to their capabilities, work loads, and locations. The centralized 
approach is efficient with small number of agents, but its performance would be de-
graded significantly in a large-scale team. Furthermore, centralized approaches are 
not appropriate for coordinating the action of multiple robots in a dynamic unknown 
environment where unforeseeable events may occur.  

On the other hand, in a decentralized approach, each robot makes its own deci-
sions for a particular set of tasks. No central unit is needed. Some initial decomposi-
tion of the global scheduling may be imposed and robots can negotiate with others to 
make the best of coordination and solve conflicts dynamically. Furthermore, to im-
prove the system robustness, error handling and system recovery are critical issues. 
According to Dias and Zink [7], in a multi-robot environment, system failure can 
occur in three different ways: (1) communication failure; (2) partial robot malfunc-
tioning; and (3) robot death. The scheduling algorithm should take these situations 
into consideration.  

Based on the above observation, we propose a hybrid task scheduling algorithm, 
where each robot makes its own decision through communicating with others as well 
as checking a global status queue to improve the coordination efficiency. This algo-
rithm avoids unnecessary communication by broadcasting global information which 
is in everybody’s interest and meanwhile limits specific information which is in inter-
est of some specific robots only. Therefore, the proposed algorithm takes advantage 
of centralized approaches to improve the overall efficiency and distributed ap-
proaches to reduce the communication overhead. To improve the system robustness 
under dynamic environment, instead of making each robot to adapt to some unex-
pected tasks which may be beyond its own capability due to changed environment, 
the robot would send help signals to those who can handle the tasks. In addition, by 
tracking the communication signal that it has sent and expected to receive, each robot 
would dynamically allocate the tasks to robots which are capable and most available. 
This feature makes the system robust against communication failures and robot fail-
ures.  

The paper is organized as follows. Section II introduces background and related 
work in the field of task allocation algorithms for multi-robot systems. Section III 
describes the problem statement. Section IV proposes a real-time dynamic task allo-
cation algorithm for heterogeneous multi-robot systems. Extensive simulation results 
are discussed in Section V. The paper is concluded by Section VI.   
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2 Related Work 

Increasing amounts of research have been conducted in the area of dynamic task 
scheduling for multi-robot systems. One of the easiest approaches to work in dynamic 
task assignment is trial and error method, where all robots will try the same task one 
by one until the perfect match is found.  This method is very inefficient and time 
consuming. James McLurkin [8] proposed three different methods of task assignment 
in robot swarms: random-choice algorithm, which is extremely communication exten-
sive and inefficient, card-dealer’s algorithm, which assigns tasks to individual robots 
sequentially, using minimal communications but a great deal of time, and tree-recolor 
algorithm, which is a compromise between extreme-communication and card-
dealer’s, balancing communications use and running time.  

Ashely and Ramprasad [9] proposed a behavior-based planning algorithm for 
multi-robot systems, where each robot predicts the behavior of its companion and 
proceeds for further steps. The main idea of this method is that the robot should not 
try to adapt to the situation but instead should directly transfer that task to an associ-
ated robot who can handle that situation. Brumitt and Stentz [10] proposed a dynamic 
mission planning for multi-robot systems in a dynamic environment, where the plan-
ning system dynamically reassign robots to goals in order to continually minimize the 
time to complete the mission. Trade-offs between robot’s traveling cost and running 
cost of mission planner has to be balanced. Smith and Davis [11] proposed a contract 
net protocol, where the collection of nodes (robot) can be represented as a contract 
net. There are many auction based methods available for handling dynamic task allo-
cation and MURDOCH [3][4] is a popular one among them, which uses contract net 
protocol as its communication protocol. Generally, distributed systems rely on fitness 
based actions and negotiation protocols. MURDOCH uses publish/subscribe messag-
ing for distributed control of multi-robot systems.  

A task-assignment architecture was proposed in [12] for cooperative transport by 
multiple mobile robots in an unknown static environment, which consists of two real-
time planners: a priority-based task-assignment planner and motion planners based on 
short-time estimate. This method is also compared with Stillwell’s algorithm in [13], 
where homogenous robots are ant like objects who try to move a big piece of food 
from one place to their nest. Each of them tries to contribute in the most efficient 
way. The scheduler proposed in [14] is one example of greedy decentralized schedul-
ers. Generally, these kinds of co-operative search approaches are efficient and robust 
in applications like military scouting and automatic trash collection. A novel emotion-
based recruitment approach was proposed in [15] for a multi-robot task allocation 
problem. Affective recruitment is tolerant of unreliable communication channels, and 
can find better solutions than simple greedy schedulers.  

3 Problem Statement 

A simplified proof-of-concept task environment, as shown in Fig. 1, is divided into 3 
different sub-areas: high-pressure sub-area, intensive-light sub-area, and smoking 
sub-area. Different types of robots are defined based on their capabilities.  For exam-
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ple, P type robot, which is only capable of working in high-pressure subarea, but not 
the other two subareas. Here P stands for pressure. Similar definitions are applied to 
L type robot and S type robot. Some robots may have capabilities suitable for multiple 
sub-areas, such as PS type or LS type.  In order to implement the assigned missions in 
a more efficient manner, task preemption is not allowed among the robots in the pro-
posed task allocation approach.  It is assumed that robots are autonomous, are able to 
localize themselves within the environment, can avoid obstacles and plan path to a 
destination.  

Consider that we have N heterogeneous robots and M different tasks randomly 
distributed in different sub-areas.  Here task is a conceptual terminology, which can 
be defined as various physical jobs, such as trash can collection, de-mining, transpor-
tation, construction, or assembling.  The robots are expected to move to the position 
where the tasks are located and process the task.  The environment can be as simple 
as Fig, 1(a) 1 or as complex as Fig. 1(b), which is unknown to robots.  However, it is 
assumed that each robot has on-board sensors capable of detecting different subareas.  
Initially, if some predefined tasks have been stored in a robot, it will move to those 
tasks.  If no predefined task exists, robots would randomly move around to search for 
the tasks in the environment.  The requirement of these tasks may be changed due to 
dynamic environment.  The objective of this project is to develop an efficient task 
scheduling algorithm among heterogeneous robots under dynamic environment so 
that all of the tasks would be completed as soon as possible meanwhile cost (i.e. 
power consumption) can be reduced as low as possible.  

       
(a)                                                             (b) 

Fig. 1. Possible task environments. 

4 A Hybrid Approach 

To tackle this scheduling problem, a hybrid centralized and decentralized method is 
proposed, where each robot makes its own decision, communicates with others to 
share task information, as well as to check a global task status queue to improve the 
coordination efficiency.  The architecture of the approach is shown in Fig. 2.  
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Fig. 2. The architecture of the hybrid approach. 

Each robot has a local database to keep all the information it required to make de-
cisions. This database structure, as shown in Fig.2, includes three major parts: robot 
parameters, task parameters, and local task queues. Robot parameters consist of robot 
ID, capability vectors of all robots, current locations of all robots relative to a refer-
ence coordinate system, status of all robots, locations of all tasks. Task parameters 
consist of task ID, task requirement, task status, and task timer.  

Robot ID is a unique identification number for each robot. Capability is robot’s 
ability to perform a task, which is a combination of different sub-areas represented by 
a capability vector. Robot status consists of free (its local task queue is empty), busy 
(some tasks are in its local task queue), or failed. Task ID is represented by its physi-
cal location in a reference coordinate. Task requirements depend on the sub-area 
where the task located. Task status shows whether the task is in progress, completed, 
in-trouble, or time-out. Task timer is used to track how long the task has been proc-
essed. To prevent the system to be hanged by one task forever, if the processing time 
is greater than a predefined threshold, time-out status would be labeled on the task.  

Local task queue keeps a list of tasks a robot will perform sequentially. These 
tasks may be some predefined tasks before the system starts, or tasks detected or 
reassigned on the fly. Once the robot finishes its first task in its task queue, it would 
remove the finished task and go to next one until the last task in the queue. Once this 
queue becomes empty, robot will start moving randomly to search for a new task. 
Since it is difficult to predict all tasks in advance, some predefined tasks may not be 
appropriate for a robot anymore under dynamic environment. If a robot finds out that 
it is difficult for it to process a task in its local queue during execution, it would send 
help request to those robots whose capabilities match the task requirement. If help 
responses are received, the robot will assign the task to the responded robot, and 
delete it from its local queue. Meanwhile the responded robot would add that task in 
its local queue.  

Global task status queue is a queue in which robot keeps the information about all 
tasks being processed or completed. The main purpose of this global task status queue 
is to prevent any unnecessary redundancy among robots to process the same task. 

Global task status queue

Local task queue

Task parameters

Task ID

 requirement

status

timer

Robot
parameters

Robot ID

Capability

current location

status

location of tasks

Check and updateCheck and update

Communication
signal

Local task queue

Task ID

 requirement

status

timer

Robot
parameters

current location

status

Robot ID

Capability

location of tasks

Robot 1 Robot 2
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This global queue will be updated by all robots whenever task status has been 
changed.  

Initially, all robots move around randomly in the environment searching for tasks. 
When a robot detects a task, it checks the requirements of the task first. If the re-
quirements of the task match with its own capability, then the robot would perform 
the task and update the global task status queue. When a robot completes a task, it 
would update the global task status queue about its current task state. The states of a 
task include beginning, completion, in-trouble, and time-out. This global status of 
tasks is stored in the global task status queue for all robots. Whenever a robot needs 
help, it only broadcasts helps to those capable robots instead of everyone. Here a 
trade-off between memory capacity of robots and communication overhead among 
robots has to be made. The system stops when the global task status queue is filled up 
with all tasks with status of completion.  

If multiple robots respond to the help requesting signal, the helper needs to make 
decision which robot to pick. On the other hand, if a robot was selected by more than 
one helper, it also need to make decision which task to select (if more than one re-
sponded robots) or which task to put into its local task queue first (if only one robot 
can do these tasks). A fitness function is required for this decision making. Here, a 
auction-based method is applied, which is defined as follows:  

.,...,2,1,,...,2,1,
)()|(

),,( MjNi
d

nftcf
kdscF

i

iji
iii ===                 (1) 

Where ii dc ,  and in represent the capability, distance from the current task location, 
and number of tasks in local queue of robot i, respectively.  jt  represents the task 

types, and k is a scale factor.  )|( ji tcf  is a matching function of  the capability of 
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In other words, if all of the responding robots are busy, the numbers of tasks in 
their local task queues are compared.  The smaller the task number in queue, the 
higher the possibility of the corresponding robot would be selected as the helper.  

Since robots need share task information with others, a specific communicate pro-
tocol is required for this application.  Basically, four types of signal frames are de-
fined in the communication protocol, (1) help requesting signal frame; (2) help re-
sponding signal frame; (3) help accepting signal frame; and (4) global task updating 
signal frame.  The detailed frame definitions are shown in Fig. 3. When a help seek-
ing robot receives help responding signal, it would send help accepting signal back to 
the selected robot.  If responder robot is busy at that time, it would add that task in its 
local task queue and continue working on its current task.  Global task updating sig-
nal is used to update the global task queue.  
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Fig. 3. Communication protocols among robots. 

5 Simulation Results 

To evaluate the proposed algorithm, a simulator is developed using C/C++ language 
under Windows environment, and a snapshot of the simulation screen is shown in 
Fig. 4. Six robots are employed in the simulation including 2 P-type (represented as 
Rp1 and Rp2), 2 L-type (RL1 and RL2), and 2 S-Type (Rs1 and Rs2). Eight tasks are 
generated, which are represented by the location coordinate within a reference frame. 
T1(X1,Y1), T2(X2,Y2) and T3(X3,Y3) are in high-pressure sub-area, T4(X4,Y4), 
T5(X5,Y5) and T6(X6,Y6) in smoking sub-area, and T7(X7,Y7) and T8(X8,Y8) in 
intensive-light sub-area. The local task queue is located on top-left, and the global 
task status queue is listed on top-right. The bottom-left part indicates the communica-
tion signals sent or received by robots. Various geometric shapes in the task environ-
ment represent static obstacles. 
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Fig. 4. A snapshot of the simulation screen. 

Most task allocation problems among robots have applied group-wide broadcast 
communication to share the information and negotiate with team members. This kind 
of broadcast communication usually requires more communication overhead, power, 
time and cost, especially for a heterogeneous team where only some specific members 
can conduct specific types of tasks, not all of them. In our algorithm, instead of 
broadcast to everyone, the help information is only broadcasted to those which have 
the capability for the task. The communication cost comparison results are shown in 
Fig. 5, where the communication cost of our approach (i.e. 23 times) has been signifi-
cantly reduced compared with the group-wide broadcasting method (i.e., 35 times). 
Communication overhead is directly proportional to task processing time and power 
consumption. In other words, our approach would be more power efficient and spend 
less time to finish the tasks than the group-wide broadcasting method. For this simple 
example with 6 robots and 8 tasks, the time required to finish all tasks are shown in 
Fig. 5(c).  

A simple auction-based method using broadcasting is applied for comparison, 
where robots randomly search for tasks and broadcast the task information to all team 
members. If one robot needs help and more than one response received, the robot 
which is closest to the task will be selected. Four cases of different task distributions 
are designed in the simulation, where 8 task locations are re-distributed in different 
cases. The time required to finish all tasks under different task configuration cases are 
recorded and shown in Fig. 6. The proposed algorithm obviously outperforms the 
random searching one. The proposed method selects the helper robot not only de-
pends on its current distance to the task, but also its current status. If there is a long 
list of tasks in its local task queue of a robot, even if it is closest one to the task, it 
may end up selecting other robot with a much shorter list of tasks in local queue.   

10



Communucation cost of our approach

0
0.5

1
1.5

2
2.5

3
3.5

Rp1 Rp2 Rl1 Rl2 Rs1 Rs2

Robots

Ti
m

es
 o

f c
om

m
un

ic
at

io
n 

si
gn

al
s help request

help response
help acceptance

 

Communication cost of broadcast

0
0.5

1
1.5

2
2.5

3
3.5

Rp1 Rp2 Rl1 Rl2 Rs1 Rs2

Robots

Ti
m

es
 o

f c
om

m
un

ic
at

io
n 

si
gn

al
s help request

help response
help acceptance

 
(a)                                                                 (b) 

 

Time consumption

0

50

100

150

200

T1 T2 T3 T4 T5 T6 T7 T8

Tasks 

Ti
m

e 
(s

ec
on

d) proposed algorith

algorithm with
broadcasting

 
(c) 

Fig. 5. Comparison of communication overhead. 

To evaluate the robustness of the proposed algorithm under the failure situations, 
such as communication failure and robot failure, another set of simulation results with 
the same four task distributions as in previous experiments are shown in Fig. 7. It is 
assumed that the communication failure happens once for a while due to the envi-
ronment or temporary traffic jam. It can be seen that the communication failure didn’t 
affect the system performance extensively. This is because once a robot detects a 
communication failure, it would send signals again in next cycle until the acknowl-
edgement is received, which prevents the signal loss due to the communication fail-
ure. In this simulation, it is assumed that Rs2 is dead, which means that all of tasks in 
smoking sub-area have to be conducted by Rs1. The simulation results show that the 
system performance degraded at some level with a failure robot instead of being stuck 
forever. 
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          Fig. 6. Simulation comparison.               Fig. 7. Simulation with system failures. 

 

11



6 Conclusions and Future Work 

In this paper, a hybrid task scheduling approach has been proposed, which signifi-
cantly reduces communication overhead while improving the overall system perform-
ance through dynamic task allocation. This algorithm avoids unnecessary communi-
cation by broadcasting global information which is in everybody’s interest and mean-
while limits specific information which is in interest of some specific robots only. 
Each robot would dynamically allocate a task which is difficult for itself to other 
capable and most available robots, and keeps tracking the help requests, which makes 
the system robust against communication failures and robot failures. Simulation re-
sults show robot communication overhead can be significantly reduced, which auto-
matically leads to reduction of power consumption and time consumption. In our 
future work, more dynamic situations will be considered, such as malicious agents, 
dynamically adding to or removing agents from the current team, global update fail-
ures. Furthermore, the method will be implemented to a real-world multi-robot sys-
tem, where robot dynamics, kinematics, robot-robot interaction and sensors would 
have to be considered.  
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Abstract. In this paper, a bio-inspired stigmergy-based coordination approach 
is proposed for a distributed multi-robot system. This approach is inspired from 
the behavior of social insect swarming, where social insect colonies are able to 
build sophisticated structures and regulate the activities of millions of individu-
als by endowing each individual with simple rules based on local perception. A 
virtual pheromone mechanism is proposed as the message passing coordination 
scheme among the robots. The proposed algorithm has been implemented on 
embodied robot simulator Player/Stage, and the simulation results show the 
feasibility, robustness, and scalability of the methods under different dynamic 
environments with real-world constraints. 

1 Introduction 

The main challenges for swarm robots are to create intelligent agents that adapt their 
behaviors based on interaction with the environment and other robots, to become 
more proficient in their tasks over time, and to adapt to new situations as they occur. 
Typical problem domains for the study of swarm-based robotic systems include for-
aging [1], box-pushing [2], aggregation and segregation [3], formation forming [4], 
cooperative mapping [5], soccer tournaments [6], site preparation [7], sorting [8], and 
collective construction [9]. All of these systems consist of multiple robots or embod-
ied simulated agents acting autonomously based on their own individual decisions. 
However, not all of these control architectures are scalable to a large number of ro-
bots. For instance, most approaches rely on extensive global communication for co-
operation of swarm robots, which may yield stressing communication bottlenecks. 
Furthermore, the global communication requires high-power onboard transceivers in 
a large scale environment. However, most swarm robots are only equipped very lim-
ited sensing and communication capability.  

An alternative paradigm to tackle the scalability issue for swarm robots while 
maintaining robustness and individual simplicity is through Swarm Intelligence (SI), 
which is an innovative computational and behavioral metaphor for solving distributed 
problems by taking its inspiration from the behavior of social insects swarming, 
flocking, herding, and shoaling phenomena in vertebrates, where social insect colo-
nies are able to build sophisticated structures and regulate the activities of millions of 
individuals by endowing each individual with simple rules based on local perception.  

The abilities of such natural systems appear to transcend the abilities of the con-



stituent individual agents. In most biological cases studies so far, robust and coordi-
nated group behavior has been found to be mediated by nothing more than a small set 
of simple local interactions between individuals, and between individuals and the 
environment.  

Reynold [10] built a computer simulation to model the motion of a flock of birds, 
called boids. He believes the motion of the boids, as a whole, is the result of the ac-
tions of each individual member that follow some simple rules. Ward et al. [11] 
evolved e-boids, groups of artificial fish capable of displaying schooling behavior. 
Spector et al. [12] used a genetic programming to evolve group behaviors for flying 
agents in a simulated environment. The above mentioned works suggest that artificial 
evolution can be successfully applied to synthesize effective collective behaviors. 
And the swarm-bot [13] developed a new robotic system consisting of a swarm of s-
bots, mobile robots with the ability to connect to and to disconnect from each other 
depends on different environments and applications, which is based on behaviors of 
ant systems. Another swarm intelligence based algorithm, Particle Swarm Optimiza-
tion (PSO), was proposed by Kennedy and Eberhart [14]. The PSO is a biologically-
inspired algorithm motivated by a social analogy, such as flocking, herding, and 
schooling behavior in animal populations. 

Payton et al. [15] proposed pheromone robotics, which was modeled after the 
chemical insects, such as ants, use to communicate. Instead of spreading a chemical 
landmark in the environment, they used a virtual pheromone to spread information 
and create gradients in the information space. By using these virtual pheromones, the 
robots can send and receive directional communications to each other.  

In this paper, we propose a bio-inspired coordination paradigm to achieve an op-
timal group behavior for multi-agent systems. Each agent adjusts its movement be-
havior based on a target utility function, which is defined as the fitness value of mov-
ing to different areas using the onboard sensing inputs and shared information 
through local communication. Similar to [15], inspired by the pheromone drip trail of 
biological ants, a unique virtual agent-to-agent and agent-to-environment interaction 
mechanism, i.e. virtual pheromones, was proposed as the message passing coordina-
tion scheme for the swarm robots. Instead of using infrared signals for transceivers in 
[15], which requires line of sight to transmit and receive, we use wireless ad hoc 
network to transmit information and the virtual pheromone structure is designed to be 
more robust and efficient.   

This new meta-heuristic draws on the strengths of two popular SI-based algo-
rithms: Ant Colony Optimization (ACO)’s autocatalytic mechanism and Particle 
Swarm Optimization (PSO)’s cognitive capabilities through interplay. Basically, two 
coordination processes among the agents are established in the proposed architecture. 
One is a modified stigmergy-based ACO algorithm using the distributed virtual 
pheromones to guide the agents’ movements, where each agent has its own virtual 
pheromone matrix, which can be created, enhanced, evaporated over time, and propa-
gated to its neighboring agents. The other one is interaction-based algorithm, which 
aims to achieve an optimal global behavior through the interactions among the agents 
using the PSO-based algorithm.  

In our previous work [16], this hybrid algorithm was implemented in a proof-of-
concept simulator, where each agent has been simplified to one dot without any sen-
sors installed. The target detection was based on the distance between the agent and 
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the target. Once the distance is within the detection range, it is assumed that the target 
is detected. To apply this algorithm to the real-world robotic systems, more realistic 
issues need to be solved. In this paper, we will modify the utility function of the pre-
vious proposed hybrid ACO/PSO algorithm to adapt to a more realistic robotic simu-
lation environment. Player/Stage is utilized as our embodied robot simulator. Each 
robot in Player/Stage is installed with a camera system, a laser range finder, sonar 
sensor, and wireless communication sensor. The strength of this ACO/PSO coordina-
tion architecture lies in the fact that it is truly distributed, self-organized, self-
adaptive, and inherently scalable since global control or communication is not re-
quired. Each agent makes decisions only based on its local view, and is designed to 
be simple and sometimes interchangeable, and may be dynamically added or removed 
without explicit reorganization, making the collective system highly flexible and fault 
tolerant.  

The paper is organized as follows: Section II describes the problem statement. 
Section III presents the proposed stigmergy-based architecture for distributed swarm 
robots. Section IV presents the simulation environment and simulation results. To 
conclude the paper, section V outlines the research conclusion and the future work.  

2 Problem Statement 

The objective of this study is to design a bio-inspired coordination algorithm for 
distributed multi-robot systems. To evaluate this coordination algorithm, a multi-
target searching task in an unknown dynamic environment is implemented in 
Player/Stage simulator. The targets can be defined as some predefined tasks need to 
be processed by the agents in real-world applications, for example, collective con-
struction, resource/garbage detection and collection, people search and rescue, etc.. 
The goal is to find and process all of the targets as soon as possible. Assume that the 
agents are simple, and homogeneous, and can be dynamically added or removed 
without explicit reorganization. Each agent can only communicate with its neighbors. 
Two agents are defined as neighbors if the distance between them is less than a pre-
specified communication range. The agent can only detect the targets within its local 
sensing range.  

3 A Stigmergy-Based Coordination Approach 

3.1 Virtual Pheromone as Inter-Agent Communication Mechanism 

The ACO algorithm, proposed by Dorigo et al. [13], is essentially a system that simu-
lates the natural behavior of ants, including mechanisms of cooperation and adapta-
tion. The involved agents are steered toward local and global optimization through a 
mechanism of feedback of simulated pheromones and pheromone intensity process-
ing. It is based on the following ideas. First, each path followed by an ant is associ-
ated with a candidate solution for a given problem. Second, when an ant follows a 
path, the amount of pheromone deposit on that path is proportional to the quality of 
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the corresponding candidate solution for the target problem. Third, when an ant has to 
choose between two or more paths, the path(s) with a larger amount of pheromone are 
more attractive to the ant. After some iterations, eventually, the ants will converge to 
a short path, which is expected to be the optimum or a near-optimum solution for the 
target problem.  

In the classical ACO algorithm, the autocatalytic mechanism, i.e. pheromone 
dropped by agents, is designed as an environmental marker external to agents, which 
is an indirect agent-to-agent interaction design in nature. In the real world applica-
tions using swarm agents, a special pheromone and pheromone detectors need to be 
designed, and sometimes such physical pheromone is unreliable and easily to be 
modified under some hazardous environments, such as urban search and rescue. A 
redefinition of this auto catalyst is necessary.  

A Virtual Pheromone mechanism is proposed here as a message passing coordina-
tion scheme between the agents and the environment and amongst the agents. An 
agent will build a virtual pheromone data structure whenever it detects a target, and 
then broadcast this target information to its neighbors through a visual pheromone 
package. Let )}({)( tptp k

ijak =  represents a set of pheromones received by agent k at 

time t, where (i, j) denotes the 2D global coordinate of the detected target. Each pij
k 

has a cache of associated attributes updated per computational iteration. The data 
structure for the virtual pheromone is defined as follows: 

Pheromone structure 
{  Target position; 
   Number of target detected;  
   The ID of source robot who detects the targets;  
   The robot IDs that pheromone has been propagated before 

passed to this robot;  
   Agent intensity;  
   Pheromone interaction intensity;  
   Time stamp;} 

3.2 Target Utility  

Basically, each target is associated with different pheromone. Each agent makes its 
own movement decision based on the parameters of a list of pheromone matrix. Here, 
let’s define target utility and target visibility to explain the decision making procedure 
of each agent.  

First, let )}({)( tt k
ijk μμ =  represents a set of target utilities at time t, where μij

k(t) 

denotes the target utility of agent k , which is defined as follows:  
 

Rtktkt k
ij

k
ij

k
ij /))()(()( 21 τωμ −=                                       (1) 

where )(tk
ijω and )(tk

ijτ represent target weight and agent intensity, respectively. 
Let the target weight measures potential target resources available for agent k at time 
t. The agent intensity is an indication of the number of agents who will potentially 
process the corresponding target at location (i,j). When we say “potentially”, we 
mean all of the agents who have received the same pheromone information may end 

17



up moving to the same target. However, they may also go to other targets with 
stronger pheromone intensity based on their local decisions.  

We can use target intensity to emulate the pheromone enhancement and elimina-
tion procedure in natural world, which can be updated by the following equation: 

 
)(**)1())((*)1( teTtt k

ij
k

ij
k
ij

k
ij τρτρτ −−+=+                  (2)         

 where 0<ρ<1 is the enhancement factor of pheromone intensity. k
ijT  is the phero-

mone interaction intensity received from the neighboring agents for a target at (i,j), 
which is defined as                      

                         if source pheromone 
otherwise 

 
ij

α, 
Τ  = 

β ,  
⎧
⎨
⎩

                                            (3)  

where 0 ≤ β < α ≤ 1. If an agent discovers a target by itself instead of receiving 
the information from its neighbors, it is defined as the source agent. The source agent 
then propagates the source pheromone, to its neighbors. A propagation agent is a 
non-source agent, and simply propagates pheromones it received to its neighbors. 
Basically, k

ijT  is used for pheromone enhancement. e represents the elimination fac-
tor. In the ants system, the pheromone will be eliminated over time if it is not being 
enhanced by the ants, and the elimination procedure usually is slower than the en-
hancement. When the pheromone trail is totally eliminated, it means that no resource 
is available through this pheromone trail. To slow down the elimination relative to 
enhancement, we set 1<e .                     

R denotes local target redundancy, which is defined as the number of the local 
neighbors who have sent the pheromones referring to the same target at (i, j) to agent 
k. 21  and kk  are constant factors which are used to adjust the weights of target weight 
and agent intensity parameters.  

Generally speaking, the higher the target utility is, the more attractive the corre-
sponding target is to the agent. More specifically, when the target weight is greater 
than the agent intensity, it means that there are more tasks need to be processed (or 
there are more resources left) in this target. Therefore, the benefit of moving to this 
target would be higher in terms of the global optimization. If the agent intensity is 
greater than the target weight, it means that there will be more potential agents (glob-
ally) moving to this target, which may lead to the less available tasks (or resources) 
left in the future. Therefore, the benefit of moving to this target would be less in 
terms of the global optimization. With the local redundancy, we are trying to prevent 
the scenarios that all of the agents within a local neighbor move to the same target 
instead of exploring new targets elsewhere. 

3.3 Target Visibility  

Initially, the agents are randomly distributed in the searching environment, where 
multiple targets with different sizes and some static obstacles are randomly dispersed 
within the environment. At each iteration, if each agent adjusts its behavior based 
only on the target utility, it may lead the agent to be very greedy in terms of the 
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agents’ behaviors, since the agents would rather move to the target with higher utility 
than explore new areas. This greedy behavior of the agents may easily lead to local 
optima.   

To prevent the local optima scenarios in utility-based approach mainly based on 
ACO, we have to take into consideration of target visibility. Let )}({)( tt k

ijk ηη =  
represents a set of visibilities at time t, where )(tk

ijη  denotes the target visibility for 
agent k in terms of target at location (i, j), which is defined by the following equation:  

                        )(/)( tdrt k
ij

kk
ij =η                                                    (4) 

where kr  represents the local detection range of agent k, and the )(td k
ij represents the 

distance between the agent k and the target at location (i, j). If 1>k
ijη , we set 1=k

ijη . 
When the target visibility is higher, it means the distance between the target and the 
agent is smaller, it would be more benefit to move to this target due to its less cost 
compared to moving to the far-away target under the same environmental condition. 

3.4 Agent Behavior Control  

Now the question is how to integrate the target utility and target visibility into an 
efficient fitness function to guide the movement behaviors of each agent. To tackle 
this issue, we turned our attention to another collective intelligence - Particle Swarm 
Optimization (PSO). The PSO algorithm is population-based: a set of potential solu-
tions evolves to approach a convenient solution (or set of solutions) for a problem. 
The social metaphor that led to this algorithm can be summarized as follows: the 
individuals that are part of a society hold an opinion that is part of a "belief space" 
(the search space) shared by every possible individual. Individuals may modify this 
"opinion state" based on three factors: (1) The knowledge of the environment (ex-
plorative factor); (2) The individual's previous history of states (cognitive factor); (3) 
The previous history of states of the individual's neighborhood (social factor).  

A direct PSO adoption to swarm agents would be difficult, because swarm agents 
may be blinded over in reference to global concerns without any feedback. However, 
the PSO algorithm is a decision processor for annealing premature convergence of 
particles in swarm situations. Thus, a new optimization technique specifically tailored 
to the application of swarm agents is proposed in this paper. This new meta-heuristics 
draws on the strengths of both systems: ACO’s autocatalytic mechanism through 
environment and PSO’s cognitive capabilities through interplay among agents. In this 
hybrid method, the agents make their movement decisions not only based on the tar-
get utility defined in (3), but also on their movement inertia and their own past ex-
periences, which would provide more opportunities to explore new areas.  

Basically, the PSO algorithm can be represented as in (5), which is derived from 
the classical PSO algorithm [14] with minor redefinitions of formula variables as 
follows: 

         vij = explorative + cognitive + social                               (5)   
where vij  is the velocity of a agent. To determine which behavior is adopted by 

agent k of the swarm, the velocity, vij
k(t) has to be decided first. If the received 

pheromone intensity is high, the agent would increase the weight of social factor, and 
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decrease the weight of cognitive factor. On the other hand, if the local visibility is of 
significant to the agent, then the velocity of the agent would prefer the cognitive fac-
tor to the social factor. Furthermore, at any given time, the velocity of the agent 
would leave some spaces for the exploration of new areas no matter what. Therefore, 
the basic idea is to propel towards a probabilistic median, where explorative factor, 
cognitive factor (local agent respective views), and social factor (global swarm wide 
views) are considered simultaneously and try to merge these three factors into consis-
tent behaviors for each agent. The exploration factor can be easily emulated by ran-
dom movement.  

The challenge part is how to define local best (cognitive factor) and global best 
(social factor). One straight forward method is to select the highest target visibility 
from a list of available targets as the local best. If only one target is on the list, then 
this target would be the local best. The easy way to select global best is to select the 
highest target utility from a list of available targets. If only one target is on the list, 
then this target would be the global best.     

Instead of defining a fitness function, for a robot system, the robot velocity vector 
including both magnitude and direction would be a better representation to control the 
movement behavior. Based on the above discussion and PSO algorithm, each agent 
would control its movement behaviors by following this equation: 
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where, sce andψψψ ,, represent the propensity constraint factors for explosive, cogni-
tive, and social behaviors, respectively, 0 ≤ randΘ() < 1 where Θ = e, c, or s, and 

)(txk
ij  represents the position of agent k at time t. ))(max( tp k

ijs μ=  represents the 

global best from the neighbors, and ))(max( tp k
ijc η=  represents the local cognitive 

best. The position of each agent k at time t+1 can be updated by 
                       )1()()1( ++=+ tvtxtx k

ij
k
ij

k
ij .                              (7)   

4 Simulation Results 

To evaluate the performance of the proposed stigmergy-based algorithm in a distrib-
uted swarm agent system, we implement this algorithm on a Player/Stage robot simu-
lator. As shown in Fig. 1, the environment is an open space with 20 homogeneous 
mobile robots. Each robot is equipped with a camera system to detect and track tar-
gets, a laser range finder to measure the distance between the target and itself, a sonar 
sensor to avoid obstacles (i.e. both static obstacles and mobile obstacles, such as other 
agents), and a wireless communication card to communicate with other agents.  

As shown in Fig.1, the searching environment is a rectangle area, where several 
targets with different colors and sizes are randomly distributed in the environment, 
and grey dots represent the robots. The arc shape in front of each robot represents the 
field of view of the vision system on each robot. The communication range is set up 
as the same range of the vision but using a circle instead of an arc. Whenever the 
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robots are within other agent’s communication range, they would exchange the in-
formation between them.   

Initially, the agents are randomly searching for targets, as shown in Fig. 1(a) at t 
=1. Once a robot detects a target, it would propagate the pheromone of this target to 
its neighbors, as shown in Fig. 1(b), where a small rectangle indicates that the vision 
system on the associated robot has detected the targets. After receiving a pheromone 
message, robots make their own decisions where to move on next time step based on 
the proposed algorithm, as shown in Fig. 1(c) and Fig. 1(d). Sometimes, a robot may 
get trapped in a corner or boundary line trying to avoid obstacles. It may take long 
time before it can get out, as shown in Fig. 1(e). The simulation stops when all of the 
targets being found and processed, as shown in Fig. 1(f).   
 

    
                (a) t = 1                 (b) t = 17     (c) t = 20 

    
                   (d)  t = 50                       (e) t = 85                               (f) t = 98 

Fig.1. 20 robots searching for randomly distributed targets in an open space on a player/stage 
simulator at t = 1, 17. 20, 50, 65, and 82 time steps. 

Generally, global path planning is very time consuming, especially for swarm ro-
bots where each agent may have to replan its global path very frequently due to the 
constant agent-to-agent collision. Dynamic mobile agent avoidance is another chal-
lenging task, which is not our focus in this paper. Therefore, to speed up the search-
ing procedure in simulation, a simple path planning method is conducted. Once an 
agent makes its decision according to the proposed algorithms, it will set the selected 
target as its destination point, and move toward the target. Since there may have static 
obstacles and mobile obstacles (i.e. other agents) on its way to the destination, an 
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obstacle avoidance algorithm is necessary. Here, an adaptive vector algorithm is ap-
plied for obstacle avoidance.            

To evaluate the performance of the proposed method, utility-based method is also 
implemented, where each agent makes its own movement decision only based on the 
target utility defined in (1). Three cases of different target distributions are conducted, 
where in each case 10 targets are distributed in the environment with fixed positions. 
Then, we start running the simulations with the swarm size of 20 using both methods, 
each method runs 35 times to obtain the mean and variance values in time steps. One 
time step represents the time that all of the agents need to make their movement deci-
sions once sequentially. Some statistics results of comparison of these two methods 
are shown in Table 1.  

Table 1. Simulation comparison of two methods. 

 Mean/Variance 
(case 1) 

Mean/variance 
(case 2) 

Mean/Variance 
(case 3) 

Utility-based  174/30 121/21 183/16 
Hybrid 102/17 94/10 98/12 

It is observed from Table 1 that the hybrid method outperforms utility-based 
method. The reason behind this observation is because the agents using utility-based 
method are extremely greedy and would always try to achieve the best utility. There-
fore, they would rather move to detected targets with highest utilities than exploring 
areas for new targets. On the other hand, the hybrid method not only considers the 
target utility, but also consider the exploration (i.e. inertia factor), and its own past 
experiences. This exploration tendency would lead the agents using the hybrid 
method to be more dispersed for different targets, which may result in efficient 
searching results. When the agent receives the pheromone information of multiple 
targets, it would make decision whether to pick the target or explore to a new area, or 
if multiple targets are available, which one to pick so that the global optimization 
performance can be achieved. Furthermore, the hybrid method is more stable and 
consistent than the utility-based method from the variance values in Table 1. It is also 
observed that the proposed method is very robust to different target distributions in 
the environment.  

5 Conclusion and Future Work 

A bio-inspired stigmergy-based algorithm is proposed for a distributed multi-agent 
system. By using natural metaphors, inherent parallelism, stochastic nature, adaptiv-
ity, and positive feedback, the proposed method is truly distributed, self-organized, 
self-adaptive, and inherently scalable since there is no global control or communica-
tion, and be able to address the complex problems under dynamic environments.   

However, there are still some unsolved issues remained. For example, the com-
munication overhead among agents is extensive, which will consume too much power 
of limited on-board battery, especially for a large scale swarm agent system. Further-
more, it is difficult to predict the swarm performance according to a particular metric 
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or analyze further possible optimization margins and intrinsic limitations of these 
approaches from an engineering point of view.  Our future work will tackle these 
issues and mainly focus on developing a dynamic swarm model to allow the swarm 
agents to achieve the target global goal and expected performance.  
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Abstract. This work discusses the common opinion among robotics systems’
designer, assuming that for a given assignment and robotics system,enhancing
the robots by increasing their physical capabilities, may only result in an im-
provement in the overall performance of the system (albeit small). Therefore, a
designer may rely on existing designs prepared in the past, and by continuously
adding resources to the robots, finally achieve the overall system’s performance
he is interested in. As it can be shown, this assumption is wrong, as it may not only
lead to a zero increase in the performance, but even to a new system, comprising
far more advance (and expensive) robots, which achieve much worse results than
the original system. The work presents an example concerning the problem of
multi-robots exploration of a graph, in which adding communication features to
the robots causes the entire system’s performance to drop significantly.

1 Introduction

In recent years significant research efforts have been invested in design and simulation
of multi-agent robotics and intelligent swarms systems — see e.g. [1–3] or [4–6] for
biology inspired designs (behavior based control models, flocking and dispersing mod-
els and predator-prey approaches, respectively), [7–10] for economics applications and
[11] for a physics inspired approach).

Tasks that have been of particular interest to researchers in recent years include syn-
ergetic mission planning [12], fault tolerance [13], swarmcontrol [14], human design of
mission plans [15], role assignment [16], multi-robot pathplanning [17], traffic control
[18], formation generation [19], formation keeping [20], exploration and mapping [21],
cleaning [22] and dynamic cleaning [23] and target tracking[24].

Hitherto, in the design of robotics systems, and specifically, in the design and imple-
mentation of multi-robotics systems, there exists an implicit yet common assumption
concerning the monotonicity of the relation between the strength of the robots’ capa-
bilities (in terms of memory, sensors’ accuracy, communication capabilities, etc’), and
the overall performance this system achieves given a specific goal and an algorithm

⋆ This research supported in part by the Ministry of Science Infrastructural Grant No. 3-942 and
the Devorah fund.



for achieving it. In other words, is it widely assumed that given a multi-robotic sys-
tem comprising robots of certain features, designed for accomplishing a specific goal,
enhancing the robots’ features, or alternatively, supplying those robots with additional
capabilities, may only improve the performance these robots achieve when facing the
same problem.

Although appealing, this approach for performance improvement as a result of
tweaking existing multi-robotic designs by merely enhancing the robots’ capabilities
should be avoided, as such endeavors may result not only in spending expensive re-
sources on futile attempts to increase the system’s performance, but even in dramatic
decrease in the overall performance of the system. Althoughstrange at first, this phe-
nomenon can be examined by systematically increasing some of the features of agents
designed for a given task, for example — the physical exploration of a graph, while
observing the changes in the performance of this group of agents.

One of the most interesting challenges for a robotics swarm system is the design and
analysis of a multi-robotics system for searching and exploration (in either known or
unknown areas). For example, works discussing cooperativesearching tasks for static
or dynamic targets can be found in [25–31] whereas examples for cooperative coverage
of given regions are presented in [32–35].

This work presents a multi-agents system designed for exploring an unknown graph,
by physically moving along its vertices. The problem and itsmodel is described in
Section 2. Once a system following the basic exploration algorithm was implemented
and its performance measured, a change in its robots’ features was made, namely —
their technical specification was upgraded. The first upgrade was adding communica-
tion equipment to the robots, allowing them to share the information they acquire by
traveling the graph. The second change was increasing the robots’ sensors’ range, in an
effort to increase the accuracy of the information the robots use in order to plan their
future actions, and as a result, to increase the system’s efficiency. After these changes
in the robots’ specification were implemented, the performance of the new group was
tested and analyzed. Note that the exploration algorithm itself, which was found to be
achieve the best results in the original group of robots, wasnot changed during this
process.

Surprisingly, the analyzed results of this experiment showed that not only that the
upgraded group of robots did not achieve superior results compared to the original group
of robots, but in fact, the exploration time required by thisgroup was much longer
compared to the exploration time of the original group of robots. This was true both
for the robots with increased communication capabilities,as well as for the robots with
increased sensors’ range. The results and their analysis appears in Section 3.

2 Physical Graph Exploration

2.1 Physical Graphs

A physical graphdenotes a graphG(V,E) in which information regarding its vertices
and edges is extracted usingI/O heads, or mobile agents, instead of the “random access
extraction” which is usually assumed in graph theory. Theseagents can physically move
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between the vertices ofV along the edges ofE, according to a predefined, or an on-line
algorithm or algorithm.

Moving along an edgee, however, require a certaintravel effort (which might be
a constant time, or alternatively, consumes a constant amount of fuel). Thus, the com-
plexity of algorithms which work on physical graphs is measured by the total travel
efforts required, which equals the number of edges traveledby the agents. We assume
that each edge requires exactly one unit of travel effort.

Physical graphs are conveniently used in order to representmany “real world prob-
lems”, in which the most efficient algorithm is not necessarily the one whose compu-
tational complexity is the minimal, but rather one in which the agents travel along the
minimal number edges. Notice that while an algorithm which assumes a random access
data extraction (from now on be referred to asrandom access algorithm) may read and
write to the vertices ofG at any order, an algorithm which assumes a physical data
extraction (referred to as aphysical algorithm) must take into account the distance be-
tween two sequential operations. The reason for this is thatthe use of a random access
algorithm is performed using a processing unit and random access memory, whereas
the use of a physical algorithm is actually done in the physical environment (or a simu-
lated physical environment, which maintain the information access paradigm). Thus, a
random access algorithm can access any vertex of the graph inO(1), while a physical
algorithm is confined to the distances imposed by the physical metric.

For example, foru, v ∈ V , let us assume that the distance betweenv andu in G

is 5. Then if after a ‘read’ request fromu, the algorithm orders a ‘write’ request to
v, this process will take at least5 time steps, and will consume at least5 effort units.
Furthermore, depending on the model assumed for the mobile agents knowledge base,
this operation may take even longer, if, for example, the agents are not familiar with the
shortest path fromu to v, but rather know of a much longer path connecting the two.

2.2 Problem Description

For a given graphG, let each vertexv ∈ V contain some small data storage unitvs,
capable of storing information saved by agents traveling throughv. In time t = 0, let
vs = ∅ for everyv ∈ V .

Let us assume that whenever a robota goes through a vertexv, is saves at least its
id number and the time of the visit invs.

While in vertexv, a robota can detect the number of other robots located inv or
in its immediate surroundings, and the number of edges goingout fromv. In addition,
every edge has a unique id number, written on it (very similarto a web of roads, while
each road has a unique name or a number, and that for finding outwhere this road leads,
one must travel along it). In addition, the robot has access to all the data stored invs.

Given a group ofk robots (or agents), capable of physically traveling the graph,
according to the model described in Section 2.1, while each robot can move along a
single edge per time-step, we are interested in thegoal stateGgoal in whichvs 6= ∅ for
everyv ∈ V , meaning — that every vertex was visited at least once by somerobot. We
are interested that the time in whichGgoal is achieved will be minimal (namely, a short
exploration as possible).
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This abstract problem may ne used for simulating many commonproblems in the
field of multi robotics, for example — a search and rescue mission of unknown number
of survivors in a pre-defined (or alternatively — unknown) area, distributed autonomous
mining, a de-centralized anti-virus mechanism scanning and cleaning a computer net-
work, and so on.

2.3 Exploration Algorithm

Every robota is equipped with a data structureas, capable of storing lists of vertices,
edges and locations of other robots. Att = 0 all data structures are initialized as empty.
At each time step, a robot located in vertexv follows the exploration algorithm, which
controls the vertexu this robot will move to (notice thatv must be a neighbor ofu).
Once a robota reaches a certain vertexv, it integrates the information stored both in
vs and inas, so that at the end of this process, both contains the same information.
Whenever an inconsistency is found regarding the status of a certain vertex, edge or
robot, it is solved according to the most recent entry concerning this item.

It can be seen that throughout the movement along the graph generated by the ex-
ploration algorithm, combined with the information proliferation process executed by
using the robots as a tool for transferring the information between the vertices, a more
and more accurate image ofG is generated in the vertices storage components, as well
as in the robots’ data structures. This accuracy in turn, is supposed to contribute to the
efficiency of the robots, by accelerating the exploration process.

The exploration algorithm selected for this mission can generally be described as
the following pseudo-code, executed by each robot independently :

1. For everyv in V ′, whenV ′ is the list of vertices currently known to the robot,
perform the following :
(a) Letunvisited(v) denote the number of edges ofv, currently known to the robot,

whose destination fromv is currently unknown.
(b) Letdistance(v) denote the length of the shortest path betweenv and the current

location of the robot, comprising only vertices and edges currently known to
the robot.

(c) Let robots(v) denote the probability that other robots are located atv. This is
calculated based on the knowledge the robot has of the structure of G in the
vicinity of v and of the knowledge the robot has concerning the whereabouts
of the other robots.

(d) Letrobots-neighborhood(v) denote the probability that other robots are located
at the close vicinity ofv. This is calculated similarly torobots(v).

(e) Calculate the combined score ofv, as a weighted average ofunvisited(v),distance(v),
robots(v),robots-neighborhood(v). Note that the selection of the averaging vec-
tor is an extremely important feature of the exploration algorithm.

2. Letvbest be the vertex whose combined score is the highest.
3. Start walking towardsvbest (at the pace of a single edge per time-step).
4. When reachingvbest, randomly select one of the edges going out fromvbest with

an unknown destination, and move towards it.
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For choosing the best averaging vector, many simulation were executed, testing a
variety of weights values. Finally, several vectors were found, which were both robust
(in terms of a relatively high score for the scenarios in which they function at their
worst) and potent (in terms of the ability to score extremelyhigh in scenarios in which
they were at the best). A detailed discussion concerning thespecific vectors and the
process of selecting them will appear in an extended versionof this work, currently
under preparation.

2.4 Upgrades

Once the performance of a group ofk robots implementing the exploration algorithm
with the chosen averaging vectors were available, the robots’ technical specification
was enhanced by two major aspects.

First, a component simulating a full-range broadcasting equipment was added to
each robots, allowing it to instantly update and receive information from the other robots
of the group. The result of this upgrade if essentially the ability of a robot which calcu-
lates the heuristic score of the vertices of the graph, trying to decide its destination, to
use the most accurate information, as it is known toany of the robots. This upgrade was
expected to boost the performance of the robots, since often, a robot becomes isolated
in the graph, traveling among previously visited vertices,while valuable information
concerning this area of the graph was already gathered by therest of the robots, and is
unavailable for this robot.

The second upgrade was the addition of a full-range sensor, capable of scanning
the entire graphG. Notice that this component transform each robot to an omniscient
unit, making both communication equipment and data storagecomponents along the
vertices unnecessary (as at any given time, each robot can access any information it
requires, with complete accuracy). This upgrade was expected to increase even further
the robots’ efficiency, and as a result — to decrease their exploration time.

3 Results

A simulation of the three types of robots was built. The exploration algorithm was tested
on Erdös-Renyirandom graphsG ∼ G(n, p) whereG hasn vertices, and each pair of
vertices form an edge inG with probabilityp independently of each other.

Surprisingly, once examining the exploration times of the upgraded robots, and
comparing them to those of the original groups of robots, theexploration times of the
original groups were significantly lower than those of the upgraded robots. An example
of this phenomenon appears in Figure 1.

It can easily be seen that although there is almost no difference between the per-
formance of the broadcasting robots and the omniscient robots, both had much longer
exploration times than the the original group of the “simplerobots”, which lacked ei-
ther communication or extreme sensing capabilities. It is interesting to mention that this
phenomenon became increasingly more intense as the graphs became more and more
dense, that is — asp, the edge probability, was increased. Furthermore, as the group
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Fig. 1. This chart depicts the range of exploration times of three groups of robots, tested in a
variety of random graphs. The lower yellow curve represents the exploration time of the orig-
inal group, comprising “basic robots”, to whom the exploration algorithm used was originally
designed. The blue and purple curves represent the exploration times of the two groups of “up-
graded robots”, whose communication and sensing capabilities were enhanced, respectively.
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Fig. 2. The graph represents the ratio between exploration times of the “basic robots” and aver-
aged results of the two groups of “upgraded robots” (the red curve represents the robots which
were assigned a full-range broadcasting capability, while the blue curve represents the robots
whose sensors’ range was increased). As the number of robots (represented as the X axes) in-
creases, the ratios discussed decreases. For groups of over 30 robots, the upgraded robots achieve
an efficiency of approximately20% than this of the simple robots (namely, 5 times larger an
exploration time).
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of robots became larger, the inefficiency of the upgraded robots became significantly
clearer, as can be seen in Figure 2

After analyzing the reasons for these unexpected results, by reconstructing the in-
ternal decisions’ considerations made by each robot in the various scenarios, it was
discovered that the improved accuracy of the robots caused an undesired synchronicity
effect, grouping the robots into a small and tightly packed group. As a result, the robots
were not able to efficiently explore many parts of the graphs,as they moved heavily,
delaying each other from exposing unrevealed valuable information (such as shorter
paths between vertices).

As it turned out, the reason for this phenomenon was that the averaging vector,
found to be best for the original group of robots, contained apositive weight for the
robots(v) element. The positive contribution of this element to the overall score of some
vertexv intended to assist the scattered robots to remain loosely tied, in order to sustain
the proliferation of valuable information. As the accuracyof the robots’ knowledge
increased (first by providing them a accurate information concerning the other robots’
whereabouts at any given time, and later by providing them even the shortest ways
of reaching each other), the robots no longer needed such a strong attraction factor
in their decision making process. However, as the robots utilizes the same exploration
algorithm as originally was used by the simple robots, this attractor stopped being an
assisting element, but rather generated the delaying effect described above.

After further investigating this phenomenon, as assumption was made, that by slightly
changing the exploration algorithm, the upgraded robots will easily be able to achieve
superior performance, as originally expected. For example, by simulating noise when
it comes to the locations of the other robots, by deciding randomly whether to take
the mentioned attracting factor into consideration, or by merely changing the averag-
ing vector, decreasing the effect of therobots(v) component on the overall score of a
vertex. However, while the first two methods require the robots to be enhanced once
again (as a random generator was not currently included in the robots’ specification),
the last cannot easily be analytically shown to improve the performance. Nevertheless,
it is very easy to show that there exist some alternative exploration algorithm which
will enable the upgraded robots to produce far faster exploration than the simple robots
(for example, having a complete knowledge of the graph, eachrobot can calculate lo-
cally the fastest way in which the entire group can scan the graph, and then simply act
its role in this plan). However, as this was already known prior to this experiment, it
does not contradict the experiment’s result, namely — that enhancing the capabilities
of robots which act according to an algorithm who did not takeinto consideration this
enhancement, may result in an overall decrease of the system’s performance.

4 Conclusions

This work discussed a multi-robotic system designed for thetask of physically ex-
ploring an unknown graph. The problem and the solution modelwere presented, as
well as the initial results of a selected exploration algorithm. Then, two changes in the
robots’ technical specification, intended to increase the robots’ efficiency and perfor-
mance were presented, and the results obtained by a group comprising the new robots
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were presented and analyzed. These results hinted that counterintuitively, increasing
the robots’ physical capabilities caused a decrease in the system’s overall performance,
due to the appearance of a strong synchronicity between the robots. An estimation was
made concerning a possible solution to this problem, which in turn would have re-
quired both changing the robots’ exploration algorithm andpossibly, enhancing even
more the robots’ specification. An observation concerning the results of this experi-
ment was made, stating that when “improving” existing robots, one should take extra
care to verify that this improvement does not result in such malicious impacts on the
entire robots group. In conclusion, it is important to statethat the results of the experi-
ment discussed in this work do not intend to speak against theenhancements of existing
robots’, or multi-robotic systems’ capabilities per-se, but rather — to remind designers
of such systems that although innocent, any change in original designs should be done
with care and systematic examination (both theoretical andempirical) of the possible
results of such a change.

References

1. S. Hettiarachchi, W. Spears: “Moving swarm formations through obstacle fields”, in Interna-
tional Conference on Artificial Intelligence, (2005).

2. I.A. Wagner, A.M. Bruckstein: “From Ants to A(ge)nts: A Special Issue on Ant—Robotics”,
Annals of Mathematics and Artificial Intelligence, Special Issue on Ant Robotics, Kluer
Academic Publishers, vol. 31, Nos. 1–4, pp. 1–6, (2001)

3. L.Steels: “Cooperation Between Distributed Agents Through Self-Organization”, Decentral-
ized A.I - Proc. first European Workshop on Modeling Autonomous Agents in Multi-Agents
world, Y.DeMazeau, J.P.Muller (Eds.), pp. 175–196, Elsevier, (1990)

4. R.C.Arkin: “Integrating Behavioral, Perceptual, and World Knowledge in Reactive Naviga-
tion”, Robotics and Autonomous Systems, 6:pp.105-122, (1990).

5. M.J.Mataric: “Designing Emergent Behaviors: From Local Interactions to Collective Intel-
ligence”, In J.Meyer, H.Roitblat, and S.Wilson, editors, Proceedings of the Second Interna-
tional Conference on Simulation of Adaptive Behavior, pp.432-441, Honolulu, Hawaii, MIT
Press, (1992).

6. T.Haynes, S.Sen: “Evolving Behavioral Strategies in Predators and Prey”, In Gerard Weiss
and Sandip Sen, editors, Adaptation and Learning in Multi-Agent Systems,pp.113-126.
Springer, (1986).

7. B.P.Gerkey, M.J.Mataric: “Sold! Market Methods for Multi-RobotControl”, IEEE Transac-
tions on Robotics and Automation, Special Issue on Multi-robot Systems, (2002).

8. G.Rabideau, T.Estlin, T.Chien, A.Barrett: “A Comparison of Coordinated Planning Methods
for Cooperating Rovers”, Proceedings of the American Institute of Aeronautics and Astro-
nautics (AIAA) Space Technology Conference, (1999).

9. S.M.Thayer, M.B.Dias, B.L.Digney, A.Stentz, B.Nabbe, M.Hebert: “Distributed Robotic
Mapping of Extreme Environments”, Proceedings of SPIE, Vol. 4195,Mobile Robots XV
and Telemanipulator and Telepresence Technologies VII, (2000).

10. M.P.Wellman, P.R.Wurman: “Market-Aware Agents for a Multiagent World”, Robotics and
Autonomous Systems, Vol. 24, pp.115–125, (1998).

11. D.Chevallier, S.Payandeh: “On Kinematic Geometry of Multi-Agent Manipulating System
Based on the Contact Force Information”, The6

th International Conference on Intelligent
Autonomous Systems (IAS-6), pp.188–195, (2000).

31



12. R.Alami, S.Fleury, M.Herrb, F.Ingrand, F.Robert: “Multi-Robot Cooperation in the Martha
Project”, IEEE Robotics and Automation Magazine, (1997).

13. L.E.Parker: “ALLIANCE: An Architecture for Fault-Tolerant Multi-Robot Cooperation”,
IEEE Transactions on Robotics and Automation, 14(2), pp. 220-240, (1998).

14. M.J.Mataric: “Interaction and Intelligent Behavior”, PhD Thesis, Massachusetts Institute of
Technology, (1994).

15. D.MacKenzie, R.Arkin, J.Cameron: “Multiagent Mission Specification and Execution”, Au-
tonomous Robots, 4(1), pp. 29-52, (1997).

16. C.Candea, H.Hu, L.Iocchi, D.Nardi, M.Piaggio: “Coordinating inMulti-Agent RoboCup
Teams”, Robotics and Autonomous Systems, 36(2- 3):67-86, August(2001).

17. A.Yamashita, M.Fukuchi, J.Ota, T.Arai, H.Asama: “Motion Planning for Cooperative Trans-
portation of a Large Object by Multiple Mobile Robots in a 3D Environment”, InProceedings
of IEEE International Conference on Robotics and Automation, pp. 3144-3151, (2000).

18. S.Premvuti, S.Yuta: “Consideration on the Cooperation of Multiple Autonomous Mobile
Robots”, In Proceedings of the IEEE International Workshop of Intelligent Robots and Sys-
tems, pp. 59-63, Tsuchiura, Japan, (1990).

19. N.Gordon, I.A.Wagner, A.M.Bruckstein: “Discrete Bee DanceAlgorithms for Pattern For-
mation on a Grid”, In the proceedings of IEEE International Conference on Intelligent Agent
Technology (IAT03), pp. 545–549, October, (2003).

20. T.Balch, R.Arkin: “Behavior-Based Formation Control for Multi-Robot Teams”, IEEE
Transactions on Robotics and Automation, December (1998).

21. I.M. Rekleitis, G. Dudek, E. Milios: “Experiments in Free-Space Triangulation Using Co-
operative Localization”, IEEE/RSJ/GI International Conference on Intelligent Robots and
Systems (IROS), (2003).

22. I.A. Wagner, A.M. Bruckstein: “Cooperative Cleaners: A Caseof Distributed Ant-Robotics”,
“Communications, Computation, Control, and Signal Processing: A Tribute to Thomas
Kailath”, pp. 289–308, Kluwer Academic Publishers, The Netherlands,(1997)

23. Altshuler, Y., Bruckstein, A.M., Wagner, I.A.: “Swarm Roboticsfor a Dynamic Cleaning
Problem”, in “IEEE Swarm Intelligence Symposium 2005”, pp. 209–216, (2005).

24. Shucker, B., Bennett, J.K.: “Target tracking with distributed robotic macrosensors”, Military
Communications Conference 2005 (MILCOM 2005), vol. 4, pp. 2617–2623, (2005).

25. Y.Altshuler, V. Yanovsky, I.A.Wagner, A.M. Bruckstein: “TheCooperative Hunters - Ef-
ficient Cooperative Search For Smart Targets Using UAV Swarms”, Second International
Conference on Informatics in Control, Automation and Robotics (ICINCO), the First In-
ternational Workshop on Multi-Agent Robotic Systems (MARS), pp. 165–170, Barcelona,
Spain, (2005).

26. Kerr, W., Spears, D.: “Robotic simulation of gases for a surveillance task”, Intelligent Robots
and Systems 2005 (IROS 2005), pp. 2905–2910, (2005).

27. Passino, K., Polycarpou, M., Jacques, D., Pachter, M., Liu, Y., Yang, Y., Flint, M. and Baum,
M.: “Cooperative Control for Autonomous Air Vehicles”, In Cooperative Control and Opti-
mization, R. Murphey and P. Pardalos, editors. Kluwer Academic Publishers, Boston, (2002).

28. Polycarpou, M., Yang, Y. and Passino, K.: “A Cooperative Search Framework for Distributed
Agents”, In Proceedings of the 2001 IEEE International Symposium onIntelligent Control
(Mexico City, Mexico, September 5–7). IEEE, New Jersey, pp. 1–6, (2001).

29. Stone, L.D: “Theory of Optimal Search”, Academic Press, New York, (1975).
30. Koopman, B.O: “The Theory of Search II, Target Detection”, Operations Research 4, 5,

503–531, October, (1956).
31. Vincent, P., Rubin, I.: “A Framework and Analysis for Cooperative Search Using UAV

Swarms”, ACM Simposium on applied computing, (2004).

32



32. Rekleitisy, I., Lee-Shuey, V., Peng Newz, A., Chosety, H.: “Limited Communication, Multi-
Robot Team Based Coverage”, Proceedings of the 2004 IEEE International Conference on
Robotics and Automation, New Orleans, LA, April, (2004).

33. Koenig, S., Liu, Y.: “Terrain Coverage with Ant Robots: A SimulationStudy”, AGENTS’01,
May 28–June 1, Montreal, Quebec, Canada, (2001).

34. I.Rekleitis, A.P New, H.Choset: “Distributed coverage of unknown/unstructured environ-
ments by mobile sensor networks”, the Third MRS workshop, (2005).

35. C.S.Kong, N.A.Peng, I.Rekleitis: “Distributed Coverage with Multi-Robot System”, Pro-
ceedings of the 2006 IEEE International Conference on Robotics and Automation Orlando,
Florida - May (2006).

33



Cooperative Collision Avoidance between Multiple
Robots based on Bernstein-B́ezier Curves
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Abstract. In this paper a new cooperative collision-avoidance method for mul-
tiple nonholonomic robots based on Bernstein- Bézier curves is presented. The
reference path of each robot from the start pose to the goal pose, is obtained
by minimizing the penalty function, which takes into account the sum of all the
paths subjected to the distances between the robots, which should be biggerthan
the minimal distance defined as the safety distance. When the reference paths
are defined the model predictive trajectory tracking is used to define the control.
A prediction model derived from linearized tracking-error dynamics isused to
predict future system behavior. A control law is derived from a quadratic cost
function consisting of the system tracking error and the control effort. The results
of the simulation and some future work ideas are discussed.

1 Introduction

Collision avoidance is one of the main issues in applications for a wide variety of tasks
in industry, human-supported activities, and elsewhere. Often, the required tasks cannot
be carried out by a single robot, and in such a case multiple robots are used coop-
eratively. The use of multiple robots may lead to a collisionif they are not properly
navigated. Collision-avoidance techniques tend to be based on speed adaptation, route
deviation by one vehicle only, route deviation by both vehicles, or a combined speed
and route adjustment. When searching for the best solution that will prevent a collision
many different criteria are considered: time delay, total travel time, planned arrival time,
etc. Our optimality criterion will be the minimal travel time, which directly implies a
minimal total length of the robot paths, subject to a minimalsafety distance between all
the robots.

In the literature many different techniques for collision avoidance have been pro-
posed. The first approaches proposed avoidance, when a collision between robots is
predicted, by stopping the robots for a fixed period or by changing their directions.
The combination of these techniques is proposed in [1]. The behavior-based motion
planning of multiple mobile robots in a narrow passage is presented in [2]. Intelligent
learning techniques were incorporated into neural and fuzzy control for mobile-robot
navigation to avoid a collision as proposed in [3].

In our paper the control of multiple mobile robots to avoid collisions in a two-
dimensional free-space environment is separated into the path planning for each indi-
vidual robot to reach its goal pose as fast as possible. The second part of the task is to
design the control that will ensure the perfect trajectory tracking of the mobile robots.



Several controllers were proposed for mobile robots with nonholonomic constraints.
An extensive review of nonholonomic control problems can befound in [4]. In trajectory-
tracking control a reference trajectory is usually obtained by using a reference robot;
therefore, all kinematics constraints are implicitly considered by a reference trajectory.
From the reference trajectory a feed-forward system of inputs combined with a feed-
back control law are mostly used [5]. Lyapunov stable time-varying state-tracking con-
trol laws were pioneered by [9]. The stabilization to the reference trajectory requires
a nonzero motion condition. Many variations and improvements to this state-tracking
controller followed in subsequent research [10]. A tracking controller obtained with
input-output linearization is used in [5], a saturation feedback controller is proposed in
[11] and a dynamic feedback linearization technique is usedin [6].

The paper is organized as follows. In Section 2 the problem isstated. The concept
of path planning is shown in Section 3. The idea of optimal collision avoidance for
multiple mobile robots based on Bézier curves is discussed in Section 4. The trajectory-
tracking controller design where the control strategy consists of feed-forward and feed-
back actions is introduced in Section 5. In Section 5.1 the proposed model predictive
controller is derived. The simulation results of the obtained collision-avoidance control
are presented in Section 6 and the conclusion is given in Section 7.

2 Statement of the Problem

The collision-avoidance control problem of multiple nonholonomic mobile robots is
proposed in a two-dimensional free-space environment. Thesimulations are performed
for a small two-wheel differentially driven mobile robot ofdimension7.5 × 7.5 × 7.5
cm. The architecture of our robots has a nonintegrable constraint in the formẋ sin θ −
ẏ cos θ = 0 resulting from the assumption that the robot cannot slip in alateral direction
whereq(t) = [x(t) y(t) θ(t)]T are the generalized coordinates The kinematics model
of the mobile robot is

q̇(t) =





cos θ(t) 0
sin θ(t) 0

0 1





[

v(t)
ω(t)

]

(1)

wherev(t) andω(t) are the tangential and angular velocities of the platform. During
low-level control the robot’s velocities and accelerations are bounded within the maxi-
mal allowed velocities and accelerations, which prevents the robot from slipping.

The danger of a collision between multiple robots is avoidedby determining the
strategy of the robots’ navigation, where we define the reference path to fulfil certain
criteria. The reference path of each robot from the start pose to the goal pose is obtained
by minimizing the penalty function, which takes into account the sum of all the paths
subjected to the distances between the robots, which shouldbe larger than the defined
safety distance. When the reference paths are defined the model predictive trajectory
tracking is used to define the control.
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3 Path Planning based on Bernstein-B́ezier Curves

Given a set of control pointsP0, P1, . . . , Pb, the corresponding Bernstein-Bézier curve
(or Bézier curve) is given by

r(λ) =
b

∑

i=0

Bi,b(λ)pi

whereBi,b(λ) is a Bernstein polynomial,λ is a normalized time variable (λ = t/Tmax,
0 ≤ λ ≤ 1) andpi, 0 = 1, . . . , b stands for the local vectors of the control pointPi

(pi = Pix
ex + Piy

ey, wherePi =
(

Pix
, Piy

)

is the control point with coordinatesPix

andPiy
, andex andey are the corresponding base unity vectors). The Bernstein-Bézier

polynomials, which are the base functions in the Bézier-curve expansion, are given as
follows:

Bi,b(λ) =

(

b

i

)

λi (1 − λ)
b−i

, i = 0, 1, . . . , b

which have the following properties:0 ≤ Bi,b(λ) ≤ 1, 0 ≤ (λ) ≤ 1 and
∑b

i=0
Bi,b =

1.
The B́ezier curve always passes through the first and last control point and lies

within the convex hull of the control points. The curve is tangent to the vector of the
differencep1 −p0 at the start point and to the vector of the differencepb −pb−1 at the
goal point. A desirable property of these curves is that the curve can be translated and
rotated by performing these operations on the control points. The undesirable properties
of Bézier curves are their numerical instability for large numbers of control points, and
the fact that moving a single control point changes the global shape of the curve. The
former is sometimes avoided by smoothly patching together low-order B́ezier curves.

The properties of B́ezier curves are used in path planning for nonholonomic mobile
robots. In particular, the fact of the tangentiality at the start and at the goal points and
the fact that moving a single control point changes the global shape of the curve. Let us
assume the starting pose of the mobile robot is defined in the generalized coordinates
asqs = [xs, ys, θs]

T and the goal pose is defined asqg = [xg, yg, θg]
T , which means

that the robot starts in positionPs(xs, ys) with orientationθs and has a goal defined
with positionPg(xg, yg) with orientationθg. The property of tangentiality requires the
definition of the neighboring pointsP1(x1, y1) andP2(x2, y2), which become

P1(xs + d cos θs, ys + d sin θs), P2(xg + d cos(θg + π), yg + d sin(θg + π)) (2)

whered stands for the distance betweenPs andP1 and betweenPg andP2. The distance
d is usually defined relatively to the distance between the start and the goal pointD
(D =| pg − ps |) defined asd = γD, 0 < γ < 0.5. These four control pointsPs,
P1, P2 andPg uniformly define the third order B́ezier curve. The need for flexibility
of the global shape and the fact that moving a single control point changes the global
shape of the curve imply the introduction of another point, which will be denoted as
Po(xo, yo). By changing the position of pointPo the global shape of the curve changes.
This means that having in mind the flexibility of the global shape of the curve and the
start and the goal pose of the mobile robot, the path can be planned by four fixed points
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and one variable point. The Bézier curve is now defined as a sequence of pointsPs, P1,
Po, P2 andPg in Fig 1. This means that we are dealing with Bernstein polynomials of
the fourth order (Bi,b, i = 0, . . . , b, b = 4). The curve is defined as follows:

r(λ) = B0,4ps + B1,4p1 + B2,4po + B3,4p2 + B4,4pg (3)

y

x

P x  y1 1 1( , )

P x ys s s( , )

P x  yo o o( , ) P x  y2 2 2( , )

P x  yg g g( , ) qg

qs

D

Fig. 1. The B́ezier curve.

4 Optimal Collision Avoidance based on Bernstein-B́ezier Curves

In this subsection a detailed presentation of cooperative multiple robots collision avoid-
ance based on B́ezier curves will be given. Let as assume the number of robotsequals
n. The i-th robot is denoted asRi and has the start position defined asPsi (xsi, ysi)
and the goal position defined asPgi (xgi, ygi). The reference path ofi-th robot will be
denoted with the B́ezier curveri(λ) = [xi(λ), yi(λ)]

T . By choosing maximal time of
the experimentTmax (t = Tmaxλ, 0 ≤ λ ≤ 1) the robots tangential velocity profiles
are determined.Tmax is determined by the fastest robotRi asTmax = maxi(vi(λ))

vmax
,

i = 1, . . . , n, 0 ≤ λ ≤ 1, wherevmax is maximal allowed tangential robot velocity.
Maximal timeTmax is then common to all robotsRi. In Fig. 2 a collision avoidance for
n = 2 is presented for reasons of simplicity.

The safety margin to avoid a collision between two robots is,in this case, defined
as the minimal necessary distance between these two robots.The distance between the
robotRi andRj is rij(λ) =| ri(λ) − rj(λ) |, i = 1, . . . , n, j = 1, . . . , n, i 6= j.

Defining the minimal necessary safety distance asds, the following condition for
collision avoidance is obtainedrij ≥ ds, 0 ≤ λ ≤ 1, i, j. Fulfilling this criteria means
that the robots will never meet in the same region defined by a circle with radiusds,
which is called a non-overlapping criterion. At the same time we would like to minimize
the length of the path for each robot, which is defined assi. The lengthsi(λ) is defined
assi(λ) =

∫ λ

0
vi(λ)dλ, wherevi(λ) stands for the tangential velocity in the normalized
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Fig. 2.Collision avoidance based on Bernstein-Bézier.

variableλ and the length of the path of the robotRi from the start control point to the
goal point is now calculated as:

vi(λ) =| ṙ(λ) |=
(

ẋ2

i (λ) + ẏ2

i (λ)
)

1

2 , si =

∫

1

0

(

(ẋ2

i (λ)) + ẏ2

i (λ))
)

1

2 dλ

whereẋi(λ) stands fordxi(λ)

dλ
and ẏi(λ) for dyi(λ)

dλ
. Assuming that the start and goal

control points are known, the global shape and length of eachpath can be optimized by
changing the flexible control pointPoi. The collision-avoidance problem is now defined
as an optimization problem as follows:

minimize

n
∑

i=1

si subject to ds − rij(λ) ≤ 0, ∀i, j, i 6= j, 0 ≤ λ ≤ 1 (4)

The minimization problem is called aninequality optimization problem and can be
introduced as the minimization of the following penalty function

F (Po) =
X

i

si + c
X
ij

Γij , Γij =

�
1, min rij(λ) < ds

0, min rij(λ) > ds

, i, j, i 6= j, 0 ≤ λ ≤ 1 (5)

where c stands for a large scalar to penalize the unfulfillment of constraints. The
solution of the minimization problemminPo

F is a set ofn control pointsPo =
{Po1, . . . , Pon}. Each optimal control pointPoi, i = 1, . . . , n uniformly defines one
optimal path, which ensures collision avoidance in the sense of a safety distance and
will be used as a reference trajectory of theith robot and will be denoted asrri(λ).

To define the feasible reference path that will be collision safe, the real time should
be introduced. In the real system the tangential and the angular velocities are limited to
(vmax, ωmax). Using the relationv(t) = v(λ)

Tmax
the maximal timeTmax can be defined

to fulfil the velocity limitation (Tmax ≥ max v(λ)

vmax
).

5 Path Tracking

The previously obtained optimal collision-avoidance pathfor theith robot is defined as
rri(t) = [xri(t), yri(t)]

T
, i = 1, . . . , n. In this section the development of a predictive

38



path-tracking controller will be presented. The path-tracking control is realized as a sum
of the feed-forward and feed-back controls. The feed-forward control for theith robot
is calculated from a feasible reference pathrri(t) = [xri(t), yri(t)]

T
, which enables us

to reach a desired pose. The feed-forward control inputsvri(t) andωri(t) are derived
using a kinematic model (1). The tangential velocityvri(t) and the tangent angle of
each point on the path are calculated as follows

vri(t) =
(

ẋ2

ri(t) + ẏ2

ri(t)
)

1

2 , ωri(t) =
ẋri(t)ÿri(t) − ẏri(t)ẍri(t)

ẋ2

ri(t) + ẏ2

ri(t)
= vri(t)κ(t)

(6)
whereκ(t) is the path curvature. The necessary condition in the path-design procedure
is a twice-differentiable path and a nonzero tangential velocity vri(t) 6=0.

If for some timet the tangential velocity isvri(t)=0, the robot rotates at a fixed
point with the angular velocityωri(t) calculated from an explicitly givenθri(t).

The feedback control law is derived from a linear time-varying system obtained by
an approximate linearization around the trajectory. The obtained linearization is shown
to be controllable as long as the trajectory does not come to astop, which implies that
the system can be asymptotically stabilized by smooth time-varying linear or nonlinear
feedback. The tracking errore(t) = [e1(t) e2(t) e3(t)]

T of a mobile robot expressed in
the frame of the real robot reads

e =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 (qri − q) . (7)

Considering the robot kinematics (1) and derivating relations (7) the following kine-
matics model is obtained

ė =





cos e3 0
sin e3 0

0 1





[

vri

ωri

]

+





−1 e2

0 −e1

0 −1



u (8)

whereu = [v ω]T is the velocity input vector andvri andωri are already defined in (6).
The robot input vectoru is further defined as the sum of the feed-forward and feedback
control actions (u = uF + uB) where the feed-forward input vector,uF , is obtained
by a nonlinear transformation of the reference inputsuF = [vri cos e3 ωri]

T and the
feedback input vector, isuB = [uB1

uB2
]T , which is the output of the controller defined

in section 5.1.
Using the relationu = uF + uB , rewriting (8) and furthermore, by linearizing the

error dynamics around the reference trajectory (e1 = e2 = e3 = 0, uB1
= uB2

= 0)
the following linear model is obtained

ė =





0 ωri 0
−ωri 0 vri

0 0 0



 e +





−1 0
0 0
0 −1



uB (9)

which in the state-space form isė = Ace + BcuB . According to Brockett’s condition
[12] a smooth stabilization of the system (1) or its linearization is only possible with
time-varying feedback. In the following the obtained linear model is used in the derived
predictive control law.
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5.1 Model Predictive Control based on a Robot Tracking-errorModel

To design the controller for trajectory tracking the system(9) will be written in discrete-
time form as

e(k + 1) = Ae(k) + BuB(k)

whereA ∈ R
n × R

n, n is the number of state variables andB ∈ R
n × R

m, m is the
number of input variables. The discrete matrixA andB can obtained as follows:A =
I + AcTs, B = BcTs which is a good approximation during a short sampling time
Ts.

The idea of the moving-horizon control concept is to find the control-variable values
that minimize the receding-horizon quadratic cost function (in a certain interval denoted
with h) based on the predicted robot-following error:

J(uB , k) =

h
∑

i=1

ǫT (k, i)Qǫ(k, i) + uT
B(k, i)RuB(k, i) (10)

whereǫ(k, i) = eri(k + i) − e(k + i|k) anderi(k + i) ande(k + i|k) stands for the
reference robot following-trajectory and the robot-following error, respectively, andQ
andR stand for the weighting matrices whereQ ∈ R

n ×R
n andR ∈ R

m ×R
m, with

Q ≥ 0 andR ≥ 0.

Output prediction in the discrete-time framework In the moving time frame the
model output prediction at the time instanth can be written as:

e(k + h|k) = Πh−1

j=1
A(k + j|k)e(k) +

∑h

i=1

(

Πh−1

j=i A(k + j|k)
)

B(k + i − 1|k)·

·uB(k + i − 1) + +B(k + h − 1|k)uB(k + h − 1) .

(11)
Defining the robot-tracking prediction-error vector

E∗(k) =
[

e(k + 1|k)T e(k + 2|k)T . . . e(k + h|k)T
]T

whereE∗ ∈ R
n·h for the whole interval of observation (h) and the control vector

UB(k) =
[

uT
B(k) uT

B(k + 1) . . .uT
B(k + h − 1)

]T

and
ΛΛΛ(k, i) = Πh−1

j=i A(k + j|k)

the robot-tracking prediction-error vector is written in the form

E∗(k) = F(k)e(k) + G(k)UB(k) (12)

where
F(k) = [A(k|k) A(k + 1|k)A(k|k) . . . ΛΛΛ(k, 0)]

T
, (13)

andG(k) = [gij ] , i = 1, ..., n, j = 1, ..., b, b = max(h, n), g11 = B(k|k),g21 =
A(k+1|k)B(k|k), g22 = B(k+1|k), gn1 = ΛΛΛ(k, 1)B(k|k), gn2 = ΛΛΛ(k, 2)B(k+1|k),
gnh = B(k + h − 1|k). andF(k) ∈ R

n·h × R
n, G(k) ∈ R

n·h × R
m·h.
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The objective of the control law is to drive the predicted robot trajectory as close
as possible to the future reference trajectory, i.e., to track the reference trajectory. This
implies that the future reference signal needs to be known. Let us define the reference
error-tracking trajectory in state-space aseri(k + i) = Ai

rie(k). for i = 1, . . . , h. This
means that the future control error should decrease according to dynamics defined with
the reference model matrixAri. Defining the robot reference-tracking error vector

E∗

ri(k) =
[

eri(k + 1)T eri(k + 2)T . . . eri(k + h)T
]T

, E∗

ri ∈ R
n·h

for the whole interval of observation (h) the following is obtained

E∗

ri(k) = Frie(k), Fri =
[

Ari A2

ri . . . Ah
ri

]T
, Fri ∈ R

n·h × R
n. (14)

Control law The idea of MPC is to minimize the difference between the predicted
robot-trajectory error and the reference robot-trajectory error in a certain predicted in-
terval.

The cost function is, according to the above notation, now written as

J(UB) = (E∗

ri − E∗)
T

Q (E∗

ri − E∗) + UT
BRUB . (15)

The control law is obtained by the minimization (∂J
∂UB

= 0) of the cost function and
becomes

UB(k) =
(

GT QG + R
)−1

GT Q (Fri − F) e(k) (16)

whereQ = diag(Q) andR = diag(R). This means thatQ ∈ R
n·h × R

n·h and
R ∈ R

m·h × R
m·h.

Let us define the firstm rows of the matrix
(

GT QG + R
)−1

GT Q (Fri − F) ∈
R

m·h × R
n asKmpc. Now the feedback control law of the model predictive control is

given by
uB(k) = Kmpc · e(k), Kmpc ∈ R

m × R
n (17)

6 Simulation Results

In this section the simulation results of the optimal cooperative collision avoidance
between three mobile robots are shown. The study was made to elaborate the possible
use in the case of a real mobile-robot platform. In the real platform we are faced with
the limitation of control velocities and accelerations. The maximal allowed tangential
velocity and angular velocity werevmax = 0.5 m/s andωmax = 13 rad/s, while the
maximal allowed tangential wheel acceleration isamax = 3m/s2. Because of relatively
hight maximal angular velocity and tangential wheel acceleration only the tangential
velocity was taken into account to define the maximal time between the start position
of the robots and the goal position, which is defined asTmax ≥ max v(λ)

vmax
= 2.1m

0.5ms−1 =
4.02s where the maximal normalized tangential velocitymaxi vi(λ) = 2.1m is defined
from Fig. 3. The starting pose of the first mobile robotR1 in generalized coordinates is

defined asqs1 =
[

0, 1, π
2

]T
and the goal pose asqg1 =

[

1, 0,−π
4

]T
. The second robot
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Fig. 3. The velocities of avoiding robotsR1, R2 andR3 in normalized time variable.

R2 starts inqs2 =
[

1, 0,− 3π
4

]T
and has the goal poseqg2 =

[

0, 1, 3π
4

]T
. The third

robotR3 has the start poseqs3 =
[

0, 0,−π
4

]T
and the goal poseqg3 =

[

1, 1, π
4

]T
. The

x andy coordinates are defined in meters. The safety distance is defined asds = 0.35m.
The parameterd, which is used to define the control pointsP1i andP2i, equals0.4m

(minij Dij = 1m, γ = 0.4). In Fig. 4 the distances between the mobile robots are
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Fig. 4.The distances between avoiding robotsR1, R2 andR3.

shown. It is also shown that all the distancesr12, r13 andr23 satisfy the safety-distance
condition. They are always bigger than prescribed safety distanceds.

7 Conclusion

The optimal cooperative collision-avoidance approach based on B́ezier curves allows
us to include different criteria in the penalty functions. In our case the reference path of
each robot from the start pose to the goal pose is obtained by minimizing the penalty
function, which takes into account the sum of all the paths subjected to the distances
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between the robots, which should be bigger than the minimal distance defined as the
safety distance. Current approach as presented does not include explicit velocity and
acceleration constraints to be imposed to each robot, this remaining the future research
work.
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Abstract. Evolvable Production Systems differ from Reconfigurable and Holo-
nic Manufacturing Systems by implying ontology-based process-specific 
modularity at fine granularity with local intelligence and a distributed control 
solution based on the Multi-Agent paradigm. Understanding the dynamics of 
such complex production systems is not feasible with traditional engineering. 
For creating the manufacturing systems of the future, engineers need to dare a 
leap in their ways of thinking. Complexity Theory and Artificial Intelligence 
can be a valuable source of inspiration for manufacturing engineers. This article 
illustrates how ideas from these scientific areas fit the problems and open ques-
tions of manufacturing. Some concepts, as Self-Organization and Emergence, 
need adaptation to be applicable in production systems; others simply require 
the right perspective. Finally, a vision of future EPS is outlined.  

1 Introduction  

Evolvable Production Systems, short EPS [1, 2], are a concrete solution to the re-
quirements from the market such as stated within the Agile, Reconfigurable and Dis-
tributed approaches: they include high responsiveness, low down-times, ability to 
handle small series with many variants, and on-the-fly changeability. Together with 
ontology-based process-specific modules at fine granularity, a distributed control 
system using the Multi-Agent paradigm permits to quickly and cost-effectively adapt 
to ever-changing production requirements. The inspiration from Artificial Intelli-
gence, Mobile Robots, Complexity Theory and Biology as well as other emerging 
sciences, as detailed in this article, will help EPS to cope with the turbulent environ-
ment, many-to-many multi-directional relationships and incomplete data and knowl-
edge. 

EPS have similarities with the Bionic, Fractal and Holonic approaches [3, 4], but 
besides considering system morphology, EPS strongly link product, process and sys-
tem (see Fig. 1) by the means of detailed ontologies. As EPS, Emergent Synthesis, a 
Biological Manufacturing Systems approach [5], also focuses on self-organization, 



however lacks mechanisms usable for practical implementation and the product-
process background.  

 
 
 
 
 

 
 
 
 

The purpose of this article is to show that Complexity Theory, Artificial Intelli-
gence and related domains can be a valuable source of inspiration for manufacturing 
engineers, and to illustrate in which way many ideas found in these scientific areas fit 
the problems and open questions of the manufacturing world. Section 2 briefly ex-
plains the concept of evolvability in manufacturing as well as the distributed control 
approach required for Evolvable Production Systems (EPS). Section 3 illustrates the 
main sources of inspiration for new way of thinking, and some suitable concepts 
found in Complexity Theory and Artificial Intelligence are detailed. Among others, 
Emergence and Self-Organization are fundamental for EPS. Section 4 explains in 
which way they could be understood, and what their implications for production 
systems are. With their help, systems with far more advanced capabilities can be 
imagined, as outlined in section 5: the vision of future production systems. A brief 
summary follows in the conclusion. 

2 Evolvable Production Systems 

Evolvable Production Systems take complex systems in nature a metaphor for their 
own need to continuously adapt to an ever-changing environment. In this sense and in 
the context of manufacturing, Evolvability means the ability of complex systems to 
co-evolve with the continuously changing requirements, to undergo changes of dif-
ferent significance, from small adaptations on-the-fly to more important transforma-
tions. Ontology-based modularity at a fine granularity level, the modules’ plugability 
as well as a powerful control approach based on the multi-agent paradigm are funda-
mental.  

Evolvability is an enabler for tomorrow’s production systems. Using a concept 
similar to LEGO together with local intelligence, they allow the user to build any 
required system and to modify it at wish. Through their module re-usability and life-
cycle support, EPS considerably lower the system cost and enable the automation 
even in case of low production volumes and small lot sizes with frequent changes. 
Thanks to standardized, open interfaces, systems can gradually evolve through the 
addition, removal or exchange of modules.  

The EPS control approach, avoiding re-programming, is crucial to ensure the 
modules’ rapid plugability. Distributed approaches have the important advantage of 
low complexity in the individual control parts. They are modular and, by their nature, 

Product 

Process 
System 

Fig. 1. Strong relations. 
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show emergent robustness when facing disturbances, component failure or other 
critical situations. Agent technology ideally matches distributed systems [6]. Co-
BASA [7] is an example of a Multi-Agent Shop-Floor Control System which focuses 
on rapid system reconfiguration. Equipment resources are represented by agents and 
form coalitions according to the current production requirements, given by order 
agents. In the operation phase, product agents ask to be treated in the way specified 
by their process plan. Agents exhibit both reactive and proactive attitudes and are 
referred to as “intelligent” and having “social behavior” based on a corresponding 
ontology.  

3 Sources of Inspiration and Relevant Concepts 

Numerous scientific domains have emerged in the last few years, investigating phe-
nomena which EPS also exhibit. They can provide helpful tools and valuable theo-
retical background to cope with the complexity of manufacturing systems (see Fig. 2). 
 

 
Fig. 2. Fundamental concepts and sources of inspiration for EPS. 

3.1 Sources of Inspiration  

In Artificial Intelligence the goal is often to create autonomous, intelligent behavior, 
learning capabilities, and adaptation mechanisms in machines used for sophisticated 
tasks. Typical examples are expert systems, which, in the case of EPS, provide sup-
port for human decision making. Machine learning can be helpful for improving 
equipment calibration procedures or for the automatic creation of complex skills 
based on simple skills in coalitions of equipment modules.  

Complexity Theory looks for simple causes leading to complex behaviors [8]. 
Complex systems are spatially and/or temporally extended non-linear systems with 
many strongly-coupled degrees of freedom and high non-linearity. They are com-
posed of numerous often simple elements and characterized by collective properties. 
EPS consist of equipment modules which are connected to each other and have multi-
lateral interactions. Together, the modules form a system with the desired global 
behavior.  

Chaos Theory studies cases where future outcomes are arbitrarily sensitive to tiny 
changes in present conditions [9]. The mathematical methods founded by Poincaré 
and Lorentz try to find patterns in this seemingly chaotic situations. Manufacturing 
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systems often exhibit sensitivity to specific conditions and to disturbances. Certain 
factors lead to system breakdown while others have no significant effect. It is difficult 
to predict the critical circumstances and to cope with them.  

A promising engineering approach based on Complexity Theory is described in 
“Foundations of Complex System Theories” [10]: the Synthetic Microanalysis. Com-
bining the bottom-up and top-down views, it proposes an iterative journey from the 
whole to its parts and back.  

System Theory and Cybernetics. All systems, however complex they are, have 
some kind of organization [11]. This structures or concepts, studied in System The-
ory, are often independent from the specific system or domain. In this sense, their 
understanding can help solving problems in a somehow generic way: the approaches 
can be applied to other cases – above all complex, adaptive and self-regulating sys-
tems. Cybernetics particularly treats the aspects of communication and control by 
focusing on circular feedback mechanisms in complex systems [11]. EPS need a 
dynamically modifiable organization. Their structure as well as constituents’ interac-
tions is fundamental for the good functioning of the systems. The trade-off between 
system autonomy and human control is a challenge for engineers.  
 
Artificial Life including Swarm Theory and Mobile Robots. Scientists attempt to 
create life-like behaviors with the capability of evolution on computers and other 
“artificial” media. EPS are very similar to artificial living systems. They have a modi-
fiable structure, will exhibit some kind of self-organization, can adapt to their envi-
ronment, and react to stimuli. They are capable of evolving according to the circum-
stances, namely in terms of equipment states, and can incorporate newly available 
technology. As any living organism, they will include efforts to keep themselves in a 
constant well-functioning state through self-surveillance and self-management.  

The concepts of swarm-building living organisms, such as stigmergy and coordina-
tion mechanisms found in schools of fish and bird flocks can for instance be used by 
mobile robots for the coordination with their fellows. The robots’ autonomy and their 
capacity of collaboration are fundamental. Being reactive and proactive devices, they 
often include reasoning capabilities. 

Agentified modules in EPS can be seen like the members of a swarm: their coordi-
nation can be based on similar strategies. Even if their mechanical properties are 
diverse, from a software point of view, they have similar or identical characteristics. 
They can participate in a coalition or withdraw from it, without disturbing the rest of 
the group, and thus permit true and immediate Plug&Produce functionality.   
 
Autonomic Computing [12]. Although at another level than the other areas de-
scribed above, Autonomic Computing provides a fundamental source of inspiration 
for EPS. Large computer-based systems, forming large networks and having complex 
and multiple interactions, become increasingly difficult to manage. As a consequence, 
software will be designed to itself undertake most management tasks, such as self-
configuration, self-healing, self-protection and self-optimization. User interaction will 
be minimized and reprogramming avoided. Valid for computers, the concept of auto-
nomic systems applies also to manufacturing systems in general and EPS in particu-
lar. Complexity must be hidden from the user. Systems need easy-to-use human ma-
chine interfaces. 
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3.2 Relevant Concepts 

Out of these numerous fields of scientific studies, a set of the most relevant concepts 
is identified. Many of them are included in several domains and therefore no specific 
origin is indicated here.  
 
Depending on the context, an Agent can be a human person, an association, an ani-
mal, or a piece of software, possibly connected to some hardware. The fundamental 
characteristics are identity, intelligence and the ability to act and react in order to 
persecute goals. Agents have at least a certain degree of autonomy and can compete 
or collaborate with others. The realization of Multi-Agent Systems can adopt various 
software technologies: early attempts used object-oriented or component-based lan-
guages and evolved towards programming languages and platforms directly support-
ing the concepts of agents [6]. Also web-services are an option, as used by Schneider 
Electric in their Service-Oriented Architecture [13]. When extended by a proactive 
part, web-services are de facto very close to agents. There are numerous successful 
experiences with agent-based systems in industry [14-17]. Rockwell Automation even 
develops agent-based systems where the agents run inside the PLC itself [18] instead 
of on separate computers. In EPS, Agents naturally represent the basic building 
blocks embedded into the different components of the production system. 
 
Self-* capabilities as defined by AgentLink III [19] can concern installation, man-
agement, healing, configuration and other activities. EPS modules with self-* capa-
bilities allow to minimize user interaction, i.e. to increase system autonomy. Self-
Organization is of particular relevance: it is abundant in nature and a promising fea-
ture for artificial systems. A distributed diagnosis system for EPS, based on device 
Self-Diagnosis, is currently being developed at UNINOVA, Portugal.  
 
Emergence. Complex systems most often consist of at least two different levels: the 
macro-level, considering the system as a whole, and the micro-level, considering the 
system from the point of view of the local components. Local components behave 
according to local rules and based on preferably local knowledge; a representation of 
the entire system or knowledge about the global system functionality is neither pro-
vided by a central authority nor reachable for the components themselves. They com-
municate, interact with each other and exchange information with the environment. 
From the interaction in this local world emerge global phenomena, which are more 
than a straight-forward composition of the local components’ behaviors and capabili-
ties. Typically, there is a two-way interdependence: not only is the global behavior 
dependent on the local parts, but their behavior is also influenced by the system as a 
whole. Emergent phenomena are scalable, robust, and fault-tolerant, i.e. insensitive to 
small perturbations and local errors as well as component failure, thanks to redun-
dancy. They exhibit graceful degradation, meaning that there is no total break-down 
because of minor local errors. 
 
Fitness functions and landscapes. In nature, organisms must be fit for survival and 
in this sense react to the requirements of the ever-changing environment. The closer 
an organism matches the fitness function, the better adapted it is to the current life 
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condition. The criteria for endurance or elimination of new characteristics are most 
often multiple and form a “fitness landscape”. In the scope of EPS, process require-
ments are the system’s fitness functions / landscapes. Certain specifications are abso-
lute: the marks must be absolutely reached – otherwise the process is not fulfilled. 
Others may indicate a direction, which the system can try to converge to (e.g. save 
energy, minimize cycle time, etc.).  
 
Edge of Chaos, Far-from-equilibrium, Self-organized criticality. Constantly stable 
equilibrium states would block evolution. Dynamic systems get again and again into 
states where a little stimulus can trigger a major reaction. This gives the systems en-
ergy to evolve and makes new phenomena emerge. Illustrative explanations can be 
found in the books Tipping Point [20] and Critical Mass [21].  
 
Complex Adaptive Systems (CAS) are systems that emerge over time into a coher-
ent form, and adapt and organize themselves without any singular entity deliberately 
managing or controlling it [22]. Supply Networks have been recognized as CAS [23], 
and also EPS share many characteristics of them. They are many-body systems, com-
posed of numerous elements of varying sophistication, which interact in a multi-
directional way to give rise to the systems global behavior. The system is embedded 
in a changing environment, with which it exchanges energy and information. Vari-
ables mostly change at the same time with others and in non-linear manner, which is 
the reason why it is so difficult to characterize the system’s dynamical behavior.  

4 Self-Organization and Emergence in EPS 

In areas such as biology and artificial life, emergence and self-organization have been 
discussed for many years and accordingly, definitions exist. Also for Multi-Agent 
Systems, these topics have been investigated [24, 25]. Their interpretation in scope of 
EPS is detailed here. 

4.1 Self-Organization in EPS 

Reasons for implementing self-organization in EPS are to minimize and facilitate user 
interaction, i.e. to hide complexity and increase system autonomy.  Building and 
configuring a system composed of numerous entities with multi-lateral interactions is 
a highly complex task; the more autonomy the system has, the easier it gets for the 
user. Production systems tend to have many components of diverse nature which 
interact in many coupled ways. Agents need the capacity of (re-)organizing their 
collaboration themselves, in different forms and compositions, according to the 
needs, without passing through a central coordination point. 

Self-organization is robust and adaptive with regard to its environment. In pres-
ence of perturbations and change, the system is capable of changing its organization 
while still maintaining its functionality. This means in practice that the control system 
should be capable of handling problems and if necessary finding alternative produc-
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tion ways. A major challenge in manufacturing applications is to let the system self-
organize and at the same time, determine its behavior. Different from natural self-
organized systems, artificial systems respectively EPS may require a kind of leader, a 
broker or (eventually human) decision maker. The control influence of this authority 
may be punctual in time and scope, e.g. at important strategic points.  

4.2 Emergence in EPS 

To bring the classical notions of emergence, discussed before, closer to the reality of 
engineered systems, two classes of emergence are proposed: For “full / complex 
emergence”, the global level must show further development. There is non-linear 
dependence of the global functionality on the components and their interactions be-
tween themselves and the environment. “Basic / primitive emergence” means that the 
local-to-global dependence may be “quasi-linear” – but still, the appearance of the 
global phenomenon is not self-evident and needs some kind of “inspiration”. An 
example is the classical Pick & Place mechanism: there are many different ways of 
putting together a gripper with translation / rotation axes – but not all of them lead to 
the desired functionality.  

Not all equipment units are of the same granularity: an entire robot may as well be 
defined as a module, as a single actuator or a gripper, a gripper finger may be. Sen-
sors and other fine granularity devices can play an important role in the emergence of 
complex skills: augmented with the right sensors, an axis does not only move, it can 
then detect the presence of other objects, determine distances or execute its own 
movement as a function of the state of others.  

Some of the emergent phenomena will be favorable to the accomplishment of the 
system’s task and have considerable potential for advanced system behaviors, such as 
the emergence of complex capabilities out of simple ones. These favorable emergent 
phenomena could and should be exploited. Others may be less adapted, disturbing or 
even harmful: e.g. system integration is supposed to function without unexpected 
symptoms. In nature, unsuccessful properties will be eliminated by the survival-of-
the-fittest selection. Obviously, such a mechanism is not viable in manufacturing 
environment: harmful behavior cannot be allowed at any moment. How to cope with 
this problem in the case of EPS? Simulation can be helpful. Safety measures have to 
be taken in order to avoid problematic and dangerous situations.  

5 Vision of Future EPS 

Computing is becoming ubiquitous; little computing power devices will be present in 
every device. Manufacturing systems can then become powerful, easy-to-use and 
gradually more autonomous. EPS of the future might autonomously cover a large 
range of procedures, far more than today’s production systems can. They will receive 
specifications of what to do, but not how to achieve it and which resources to use. 
This could lead to the following scenario: 
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To release an order into the system, product agents will be accordingly config-
ured. They will carry their assembly plan and ask to be treated by operation agents. 
The kind of actions to be executed on the product parts, including specifications on 
precision, cycle time and other special needs, will be identified. This means that the 
exact process requirements will be determined, e.g. the way of picking a part, the 
geometrical trajectory to be made, the way of bringing parts from a feeder to its place 
of insertion, etc. The system must be capable to find and organize the right resources 
for each function, to grant for their successful execution as well as sustainable system 
management, as will be detailed below. 

The use of the equipment resources is yet to be chosen: this happens by exploring 
the existing system with the help of a dynamically updated map of the shop floor 
respectively the present modules as well as the modules available in the storage de-
partment or eventually in vendors’ module pools. In collaboration between operation 
agents and resource agents, several possibilities of executing the required processes 
will be determined and the best will be chosen. The criteria for this selection can be a 
standard set or specified by the user. Finally, the user will be informed about possible 
necessary addition, displacement or removal of modules. The required resources will 
be autonomously configured / calibrated for the processes, and the needed resource 
coalitions will be formed to create the complex skills. No re-programming is needed. 
Agents work autonomously and collaborate with other agents. Modules register in a 
resource so-called cluster and, from this platform, to dynamically form coalitions with 
other resource agents according to the incoming production requirements. 

The entire real time execution is then taken over by the system, which functions 
with a high degree of autonomy, too. Modules at fine granularity, incorporating reac-
tive and proactive intelligence, will exhibit self-* capabilities. Systems are able to do 
self-surveillance and self-maintenance, i.e. to observe their internal state and if neces-
sary take corresponding measures, to schedule regular maintenance, to announce the 
eventual need for staff interaction before problems become acute. Autonomic systems 
self-optimize, meaning that they continuously search for ways to optimize their op-
eration. They can self-diagnose and self-heal in order to predict and avoid respec-
tively solve most problems autonomously and, in case of the need for user interaction, 
make it as easy as possible by indicating the defective part, the problematic part inter-
action and proposing corresponding corrective measures to the shop floor staff. 

Of course, such a fundamental change in the way systems are built and especially 
run cannot be achieved from day to the next; the approach has to advance step by 
step. E.g. concerning decision making, the systems can neither be expected to become 
fully autonomous at once nor can users trust them immediately. Gradually increasing 
independence is more sustainable. At first, the system automatically collects informa-
tion in order to support human decision making. In a next phase, it gives advice and 
proposes solutions, taking note of user preferences. Later, the system indicates the 
best-fitting solution as well as alternatives and requests user confirmation. And fi-
nally, after these learning phases, the system takes decisions alone.  

In this sense and as a conclusion, systems might evolve in a way that they develop 
capabilities which the system designers have never thought of: systems could eventu-
ally offer services which they have not originally been built for.  

51



6 Conclusion 

In order to cope with today’s and tomorrow’s manufacturing needs, new solutions are 
required. Evolvability is a key to success: the capability of systems to evolve together 
with the production requirements as well as the strong product-process-system link 
are crucial. EPS provide ontology-based process-specific modularity at a fine granu-
larity and a distributed control approach using the Multi-Agent paradigm. Self-
Organization and Emergence allow system autonomy, which can considerably facili-
tate system installation and operation by hiding complexity. 

EPS share many aspects of Complex Adaptive Systems and therefore need to be 
addressed as such. Traditional engineering cannot offer corresponding tools. Com-
plexity Theory and other emerging scientific domains have the potential of providing 
valuable help to cope with CAS and the engineering of such systems, offering the 
possibility of implementing advanced system capabilities. 

The ideas described in this article require a stepwise approach. Some of them still 
need theoretical elaboration, while others are already fully or partially implemented 
on a prototype at UNINOVA, Portugal. The NOVAFLEX assembly system has been 
agentified: each module is an agent, and the multi-agent control system is operational. 
The lab installations are built of legacy components from diverse suppliers and in-
clude two industrial robots, different grippers, a warehouse and conveyor circuits. A 
distributed diagnosis system, based on a Service-Oriented Architecture and using 
device Self-Diagnose, is currently being developed. In parallel, tiny computing de-
vices for supporting MAS are being elaborated. Integrated in any kind of equipment 
unit, they will make computing capacities ubiquitous, also in the manufacturing 
world.  
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Abstract. The domain of Collaborative Time Sensitive Targeting requires 
agents to assess and prioritize tasks, dynamically form heterogeneous teams of 
agents to perform the tightly coordinated tasks, and to complete them within 
time deadlines. In this paper, we describe extensions to market-based, multi-
robot task allocation to allow for these requirements. 

1 Introduction 

The motivation for the research described in this paper is to extend the state of the art 
in market-based multi-robot planning algorithms to handle the challenges presented 
by real world domains with tightly-coordinated and time-constrained tasks. Past 
research into market-based robot coordination algorithms [2, 3, 11] has been 
motivated by an attempt to design an algorithm to reason in an efficient fashion about 
resource utilization and task allocation while preserving the ability to quickly and 
robustly respond to a dynamic environment. 

Prior work has demonstrated the effectiveness of the TraderBots algorithms [2, 3] 
in several domains. It has been used in domains with tightly coordinated tasks 
requiring heterogeneous, dynamically formed teams [7]. It has also been used in 
domains requiring homogeneous teams to perform tasks with time deadlines [8]. 
There are other real world applications that bring together elements from both of these 
areas. The Collaborative Time Sensitive Targeting (TST) problem, for instance, is a 
domain in which agents must assess and prioritize multiple tasks, form heterogeneous 
teams dynamically, and perform tightly-coordinated tasks with tight deadlines. Search 
and rescue is one real-world example of a TST problem. Multiple rescue workers, 
each having different skills, must work together to save the maximum number of 
victims within a limited time period. New information will be discovered during the 
rescue, forcing the workers to reassess and reprioritize. 

The TST domain requires tightly-coupled coordination between agents, as agents 
with complementary capabilities are required to form sub-teams in order to 
successfully perform a task. The TST domain also requires agents to reason about 
tasks with time deadlines. 

 
Section 2 of this paper explains our task domain, a type of TST problem. Section 3 

describes the standard approach of market-based, multi-robot task allocation, as 



presented in [2]. Section 4 describes our implementation in detail, along with our 
extensions to the standard approach. And in Section 5, we show our results. 

2 Task Domain 

Our task domain is a variant of the TST problem. In our scenario, autonomous robots 
perform a Search and Rescue mission by locating and treating sick sea animals. Over 
the course of an exercise (90 “minutes” long, sped up in the simulation), messages 
come in from outside the system with reports of the general locations where sick 
animals might be found. These animals move over time. The message will list the 
name of the animal (e.g. “Sick Manatee”), the approximate latitude-longitude location 
(either a single point, or an area of ocean), a deadline which the task has to be 
completed by (e.g. cure the manatee within 30 minutes or it will die), and the 
maximum reward offered for completing the task. If a task is completed before the 
deadline, the robots receive the full reward; if the deadline passes, they receive no 
reward, even if they complete the task. The robots already have an incentive to finish 
tasks as quickly as possible; the faster they complete one task, the faster they can 
begin a new one. If we wanted to make finishing as quickly as possible even more 
important, we might allow the maximum reward to drop as the deadline approached, 
gradually falling to zero. 
 
In this domain, all tasks are of equal priority; therefore, the maximum rewards are the 
same for all tasks. If we wanted to indicate that some tasks have higher priority than 
others, we could set some rewards higher than others, making them more valuable to 
perform. 
 
We have a heterogeneous set of robots available to perform these jobs. They are in 
three main groups: 

 
1. Radar Sensors – Planes and boats with radar and sonar sensing capabilities. They 

are very fast and have large sensing range; so they can get to the location quickly 
and easily pinpoint where the animal is located. However, since they are sensing 
electronically, they cannot diagnose the illness. 

 
2. Video Sensors – Planes, boats, and helicopters with video sensing capabilities. 

Because they have video, they are able to diagnose the disease the animal has and 
report it to the rest of the team. However, they are very slow and have limited 
sensing range. 

3. Rescue Workers – Boats or submarines capable of capturing or curing animals in 
distress. They are generally about as fast as radar sensors. However, they have no 
sensors of their own; they must rely on reports from the sensor robots for 
navigation data. Also, they can act only with the proper diagnosis from a video 
sensor. 
 

The robots within each group vary in their specific characteristics, such as speed and 
sensing range. Also, there are three separate areas of ocean to be searched; the set of 
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robots on each map is confined to that area. Initially, some robots are stationary near 
their home base and will remain there until they receive a task; others have initial 
paths that they follow once the clock begins, whether they have a task or not. 
 
To complete a task, there must be a minimum of two robots: a video sensor to find the 
animal and make the diagnosis, and a rescue worker to administer the treatment. A 
radar sensor is not required, but because of its speed and sensor range, it can reduce 
the cost of finding the animal. 

3 Market-Based Task Allocation 

In a market-based system, such as the one described in [2], the problem space is 
modeled as an economy. The currency may be simply an abstract measure, or it may 
represent something concrete, such as time, fuel, resources, etc. It represents the value 
of performing tasks and achieving goals. 

 
There are a set of tasks which need to be performed. These tasks will generally take 
one or a group of agents to complete. Each task is a source of revenue for the agents; 
each has a monetary reward associated with it, which is given to the agent(s) that 
successfully complete the task. These rewards vary according to a number of 
measures, such as relative priority, difficulty, risk, etc.; they are set at the beginning 
of the exercise, generally by the human assigning the tasks. Performing a task also 
costs an agent a certain amount of money, as resources must be consumed to complete 
them. 

 
The players in this economy are the robots. They may be physical or virtual, 
depending upon the jobs they must do. In a homogenous group, all of the robots have 
the same capabilities and any job may be done by any robot. More complex systems 
may be made up of heterogeneous groups. In these systems, jobs may require several 
robots working together as a team to complete the mission. Individual agents are 
“self-interested”; that is, each agent works to earn as much profit as possibly by 
minimizing its own costs and maximizing its own revenue. The goal of the system as 
a whole is to minimize the cost of resources consumed by the team while maximizing 
the value of the tasks completed. Free market economic theory holds that a collection 
of self-interested agents will self-organize through spontaneous cooperation and 
competition to create an emergent, globally efficient behavior. Market-based planning 
algorithms seek to mimic this behavior with a simulated economy. 
Tasks are distributed through auction. As each task is introduced to the system, it is 
given to a special type agent called an “OpTrader”. An OpTrader sends out an 
announcement to all of the participating robots describing the task and the maximum 
reward available for performing the task. This is the call for bids. Each robot 
interested in placing a bid for the job does three things: 
 
1. Calculate the estimated cost for performing the task. In a domain where there is no 

ambiguity, the robot may be able to determine exactly how much performing the 
task will cost. But in most realistic systems, there will be hidden information that 
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will not be revealed until the task is already under way. For example, there may be 
unknown obstacles between the robot’s current location and the destination; or the 
destination may only be partially defined. 

 
2. Calculate the desired profit. The profit must be high enough to make it worth the 

robot’s time to perform the task. The robot must decide how much payment it will 
require to make the task worthwhile. A common method for calculating a profit 
margin is to use a set percentage of the costs or available revenue.  

 
3. Calculate the bid. This is generally the cost plus the profit margin. If this bid 

amount is lower than the maximum reward available, then send it to the auctioneer. 
 

The OpTrader will gather all of the bids and award the ownership of the task to the 
robot with the lowest bid. The difference between the maximum reward and the 
lowest bid is kept by the OpTrader as its profit. 

 
Once the initial round of bids is completed, and all tasks have been awarded, each 
robot that owns a task may decide to put it up for another round of auction. Now that 
each robot has a plan of where it will be going and what it will be doing, it can have a 
better idea of its costs for performing other tasks. If it has already committed to 
performing a task in a certain location, then it might be relatively inexpensive to also 
perform another task in the same area. Inter-robot trading (reauctioning) allows the 
tasks to be redistributed to the robots that can perform that at lower costs. To 
complete such a deal both robots must be happy with the exchange – the buyer robot 
has a new task at low cost, and the seller robot has a nice profit (the difference 
between the maximum reward it announced and the buyer’s bid) for no extra work. 
 
This inter-robot trading will continue until there are no more mutually profitable deals 
to be made, at which time the robots will begin performing their tasks. As they move 
and explore the environment on their paths, they will be gathering additional 
information on the environment. As new and more accurate data becomes available, 
the robots may periodically put some of the tasks on their agendas up for reauctioning 
again; others may have discovered things that would allow them to more accurately 
estimate cost and buy the tasks from the seller. 

 
When a robot completes a task, it sends a message to the agent it bought the task 
from, requesting payment. That agent will send a message up the chain to the next 
level where it got the task from, and so on. Once it reaches the top (the OpTrader), 
payments will work their way back down the chain, until each robot along the way 
has been paid what it was promised. 
 
Auction-based task assignment and multi-robot coordination allows the system to 
approach an approximation of the optimal solution of minimal cost and maximal 
reward while keeping communication costs relatively low, avoiding single points of 
failure, and robustly handling robot failure and communication difficulties. 
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4 Implementation and Extensions 

We developed our simulation and agent environment entirely in Java using the JADE 
agent framework [1]. Task allocation through auction was handled using inter-agent 
communication. The market-based task allocation is performed using the methods 
described in Section 3, with our extensions. 

4.1 Agents 

The primary type of agent in our system is the TraderAgent. Each TraderAgent is 
associated with a single robot in the simulation environment. When they are first 
initialized, TraderAgents have a back and forth communication with their assigned 
robots to learn their capabilities (what type of robots they are, their speeds, sensing or 
rescue ranges, and so on) and current status (their current locations, their remaining 
fuel, and, in the case of sensors, lists of objects detected and their locations). Each 
clock tick of the environment thereafter, each robot will send its agent the latest status 
report. If the TraderAgent wants its robot to move to a new location, it sends a 
message directing it on the new path. 
 
A TraderAgent’s primary job, as the name implies, is to trade tasks. When a new task 
is announced, an agent may attempt to buy it through auction. This process is 
described in Section 4.2. An agent which owns a task may put it up for auction, either 
to off-load the task to a new robot, or in team building. These re-auctioning methods 
are described in Section 4.3. 
 
When tasks are introduced to the system, they are initially given to the special 
OpTrader agent. This agent differs from a standard TraderAgent only in that it does 
not have a robot associated with it. The OpTrader immediately puts tasks given to it 
up for auction, with a maximum offered reward that is part of the task description. 
When the task is completed, it is responsible for sending the payment for the job to 
the original purchasing agent. Because it is not associated with a robot, it cannot be a 
member of a team. In a system where robustness is essential, there could easily be 
multiple copies of these agents, either ready to take over in the event of a problem or 
performing their jobs in parallel with their counterparts; however, in our system, one 
of each is sufficient. 

4.2 Bidding on Auctions 

When a TraderAgent receives an auction announcement, it follows the three steps 
described Section 3, on standard auction-based systems. 
 
1. The agent calculates its estimated cost for performing the task. In our system, cost 

is based upon the time spent performing the task. The locations given in the 
auction message are general locations, not specific; once sensors arrive there, there 
may need to be some exploration before finding the actual animal. Also, this cost 
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may be affected by other locations that the agent already intends to visit. If the new 
area is nearby somewhere the agent is already headed, the estimated cost for the 
new task would be lower. 

 
2. It calculates the desired profit. The TraderAgent calculates, as its base profit, a 

percentage of the difference between the maximum reward offered and its 
estimated cost. In addition, an opportunity cost for accepting the task is calculated. 
This represents the likelihood that the agent will be able to purchase other tasks at 
a future date. The agents know the locations and capabilities of other nearby robots 
with similar capabilities, since this information is periodically broadcast locally. 
The agent selects a number of random locations on the map and simulates how 
many of these locations it would be likely to win in a hypothetical auction. This 
represents opportunity cost. An agent with a high OC can safely lose out on the 
current auction without fearing for its own economic well-being. Therefore, a high 
OC agent is able to request a higher profit margin. Meanwhile agents in less 
desirable circumstances are willing to lower their profit margin in an attempt to 
win the current auction. This means that the lowest cost agent may not always win 
an auction, particularly in cases where the overall team can benefit by saving a 
high OC agent for future tasks. We apply this opportunity cost function to help 
prevent over-committal of scarce resources. 

 
3. The TraderAgent decides whether or not to place the bid, based upon cost plus 

desired profit. If this value is less than the maximum reward, then it places the bid. 
If the value is higher than the maximum reward, or if the TraderAgent realizes it 
cannot complete the task in the required amount of time (causing the task to be 
finished after the task deadline), it will decide not to place a bid and it sends a “no 
thanks” message to opt out of the auction. 

4.3 Re-Auctioning Tasks 

There are two situations in which an agent will attempt to re-auction a task it owns 
but has not yet completed. The first is in the team building stage. This step is critical 
to robots performing tightly coupled tasks. After a robot wins a task at auction, it is 
sent a list of other robots that already have ownership of the task. These robots make 
up the team that will eventually perform the task. If the team is not yet complete, for 
instance if no rescue worker has joined the team, the robot will place this task on the 
auction block with a caveat that it is only accepting bids from a certain type of buyer. 
At the conclusion of the auction, the winning bidder is assigned ownership of the task, 
but the seller retains ownership as well, and all members of the team update their 
team lists. 

 
Robots will also periodically attempt to place tasks they own up onto the auction 

block for the purposes of offloading the task onto another robot. In this case the task 
can only be sold to a robot with the same capabilities as the seller. If there are no bids 
the seller retains ownership of the task. On the other hand, if new information has 
arrived and cost estimates have been updated, a different robot may choose to buy the 
task. This will occur only when the new robot is willing to charge less to perform the 
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task than the seller’s expected costs, allowing both robots to earn a profit. In this case, 
the winning bidder replaces the seller on the original team list, and the seller is freed 
of its obligation. 

4.4 Collecting Payment for Completed Tasks 

As described earlier, the tasks in this system must be performed by a team of robots 
including at least one video sensor and rescue worker. This team can also optionally 
include a radar sensor. The rescue worker is the robot that actually finishes the task, 
which it accomplishes by administering medicine curing the animal. Once the rescue 
worker has done this, its TraderAgent reports the fact to its teammates. Each 
teammate then requests payment from the agent that it purchased the task from.  
 
Our system varies in this regard, however, from the standard auction-based algorithm. 
In our task the teams are made up of robots that perform their jobs at greatly different 
speeds. Even though the estimated cost for a radar sensor may be very low, the actual 
cost is greatly increased by having to wait around while the slow video sensor travels 
to the location and does its own part of the job. Since the agents associated with fast 
robots generally win the tasks before the slower ones, there is no way to know ahead 
of time what the additional costs might be. 
 
There are a number of ways that this inefficiency could be dealt with. For example, 
we could include information about slower robots in the cost estimation functions of 
each TraderAgent. Another option would be to have the agents, once a team is 
completed, share their cost estimates and allow the faster ones to recalculate. We 
chose a method that requires a lower amount of inter-robot communication, in which 
agents incur penalties on the agents below them in the chain. 
 
The request for payment is the same. Each agent requests the amount of money it bid 
for the task from the agent it bought the task from. However, as the payments are 
distributed down the chain, each agent compares the actual cost to the estimated cost 
it had initially planned upon. The difference between these is deducted from the 
amount paid to the next agent. This agent adds, as a penalty to the next agent down, 
the difference in its actual cost and the cost estimate, plus the amount it was penalized 
by its seller. This penalty will move down the chain, until it finally winds up where it 
belongs, on the slowest member of the team. These payments reflect the amount of 
money the original agents would have bid if they had known the true cost based upon 
the slowest robot. See an example in Figure 1. This example assumes that there was 
no inter-robot trading or adding and removing of team members, but the details would 
be essentially the same even with other agents in the chain. Future versions of the 
algorithm may be able to use these penalties to learn the hidden costs of working with 
certain other robots. 
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Fig. 1. Task Completion. 

5 Results 

The TST domain provides an ideal testbed for the market-based task allocation 
algorithm, since completion of each TST task requires effective communication and 
task assignment strategies. Furthermore the TST problem provides clear metrics for 
evaluating group performance, as we can measure both the percentage of tasks 
completed and the time needed to complete each task. We use this domain to 
demonstrate our hypothesis that as the self-interested agents earn money in the virtual 
economy, they also contribute toward the team goals and overall group performance, 
even when performing tightly coupled tasks under pressure of time deadlines. 
 
We built a test problem for our robot planning algorithm by performing a direct 
translation of tasks used in a set of human experiments we performed into our own 
modified aquatic TST domain. The translation was completely isomorphic, meaning 
that the speeds, positions, and other attributes of all elements of the environment were 
identical. Only the labels and images were changed for the purposes of the demo. The 
robots planned and executed their own actions for 90 simulated minutes while 
following the rules of the team-based economic system outlined above. A total of six 
tasks were fed electronically at timed intervals into the robot auction environment. 
 
The results of the robot and human teams are displayed in Table 1. The results show 
that the robots were able to demonstrate effective team building and task assignment 
strategies. The team of robots completed five of the six tasks with plenty of time to 
spare before the task deadlines.  
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Table 1. Time (hh:mm:ss) to complete each task, comparing market-based robot task allocation 
algorithm and human team performance. 

Task: Manatee Killer 
Whale 

Blue 
Whale Dolphin Sea 

Turtle 
Toxic 
Leak 

Robot 
Completion 
Time 

0:42:00 0:40:00 1:22:00 1:09:00 1:07:00 N/A 

Avg 
Human 
Team 
Completion 
Time 

0:56:12 0:59:39 1:21:24 N/A 1:20:36 N/A 

 
The robot team results also compare very favorably to the human teams’ results. The 
robots completed five of six tasks, while no human team completed more than four.  
The agents were able to complete the Dolphin task, which none of the ten human 
teams had successfully prosecuted. The robots were also significantly faster than the 
best human teams in three of the four tasks that were solved by both humans and 
robots. The simulated agents did fail to complete one task, but none of the human 
teams were able to successfully complete that task either. For more details on the 
human version of the experiment, and comparing human/robot results, see our paper 
submitted to the main conference. 

6 Conclusion 

We have shown that market-based multi-robot task planning can be successfully 
extended into domains requiring tightly-coordinated actions to solve tasks with time 
deadlines. In the case of our simplified TST domain, teams of autonomous robots 
were able to provide significant gains over the performance of teams of humans. 

 
We are not suggesting removing humans from the loop of the TST process. In real 
world TST of any kind, there are many decisions that cannot possibly be made 
without humans. Instead, our hope is that lessons learned from this research that can 
be applied to real world problems.  
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Abstract. BESA-ME is a software middleware designed to make easier and to 
improve the construction of robotic control systems based on multi-agent 
techniques. BESA is a behavior-oriented, event-driven and social-based general 
purpose architecture designed to build concurrent applications using the multi-
agent paradigm. The BESA abstract model incorporates the concept of behavior 
and the management of asynchronous events, which are very useful in the 
construction of robotic systems, thus it allows to design robot control 
architectures in a natural and direct fashion. BESA-ME, micro-edition, is the 
adapted BESA model that is well suited to be implemented over 
microcontrollers in embedded systems. Initially, it has been developed for the 
PIC18F chip family, and then adapted for dsPIC60F chip family, both under the 
real time operating system FreeRTOS ™.  

1 Introduction 

When dealing with the construction of complex systems, a design methodology 
usually includes splitting the system in a set of smaller simple tasks. This approach 
allows dealing with complexity and makes possible to improve the efficiency of the 
system implementation by distributing the execution of these tasks on a set of 
processing units. The agent paradigm provides a conceptual framework where 
systems can be analyzed and synthesized as a collection of interacting entities, using a 
high level abstraction, which fits in a natural fashion with the implicit concurrent 
requirements of robotic systems. 

The development of new products implies the incorporation of innovative and 
more complex functionalities. The actual tendency of the technology used to improve 
the system efficiency is to construct multi-processor, multi-core or multi-thread 
machines [1]. This approach has the advantage of being easily scalable; however, in 
this case it is necessary to include specialized mechanisms to solve synchronization 
and communication problems. In addition to the high computational power 
requirements, some applications like smart home systems [2], robotics, automation, 
industrial machines and multi-robot systems [3] require that the embedded hardware 
communicates frequently with external stand alone systems. As a consequence, 
design of software for embedded systems must: generate modular concurrent 
solutions to deal with complexity, take advantage of hardware parallelism, and be 
adequate to interact in a natural fashion with external stand alone systems. It’s 



requirements to have models and platforms that ease the system design, taking 
advantage of the parallel processing capabilities of the actual and future processors. 
In the context of robotic systems, the design problems previously introduced are 
amplified due to the fact that robots must be able to evolve in a not completely 
observable environment under real time constrains. In order to deal with these critical 
conditions, the designer must also take into account the following issues: 

• manage complex synchronization of non-deterministic events coming from 
sensors and controlled actuators. 

• distribute the application into several processes, using communication taking 
advantage of the parallel and specialized hardware. 

• use an unified model in both the embedded and the external components of 
the system. 

• use of a holistic approach where the robot control unit is modeled as a unique 
composed system; the system is seen as a collection of logical units, which 
can be physically deployed in the available hardware (embedded or not). 

The actual software tools to model, design and implement embedded distributed 
and real-time systems covers different needs. Real Time Operating Systems (RTOS) 
are used for the implementation of systems with time-response constraints [9]. For 
instance, TURTLE [6] offers an environment based on the Unified Modeling 
Language (UML) for the formal model [7]. Another interesting approach uses the 
synchronous language LUSTRE, designed for the development of critical control 
software [8]. These approaches are process oriented, where the basic processing units 
are processes or tasks that usually communicate by message passing mechanisms. 
Even if the conceptual model provided by the notion of process is very useful, general 
and flexible, it has a low level of abstraction, which makes it difficult to be used in the 
design of complex systems. For instance, when designing a robot or multi-robot 
system, it would be preferable to use a conceptual model with higher degree of 
abstraction, where notions as behaviors and goal-oriented entities could be modeled in 
a more direct way. 

A well suited approach to model complex problems is the Multi-Agent System 
(MAS) paradigm. Different activities can be distributed into several cooperative 
autonomous entities, and interactions are the basis for the dynamics of the system. 
Agents respond to events coming from its environment or derived from its 
interactions with other agents. The communication is the basis to construct the social 
level which emerges from the inter-agent interaction [10]. A MultiAgent System, 
MAS, is a computational cooperative system capable of executing concurrent tasks 
through its agents. 

BESA is a MAS architecture [5] [17] that aims to solve the problems that where 
depicted in the precedent paragraphs. BESA provides an abstract model to construct 
multi-agent systems. The initial implementation of the BESA model was developed to 
work in a Java distributed environment. The BESA micro-edition, BESA-ME, is 
introduced in this paper. The BESA-ME model, architecture and implementation have 
been developed for embedded systems using RTOS as software support, running in 
microcontrollers and DSP hardware platforms. This development is mainly motivated 

65



to deal with the requirements involved in the design of multirobot systems, where a 
recursive organizational approach is applied. 

In this paper the BESA-ME conceptual model and architecture are explained. 
Then, the RTOS software and hardware considerations are analyzed in order to adjust 
the model to fit the constraints of a practical embedded application. Finally, the 
implementation strategy is depicted and the obtained results are analyzed. 

2 BESA Architecture 

The BESA architecture defines a conceptual model for the implementation of an 
agent framework. The construction of a complex and concurrent application must use 
this agent conceptual abstraction to model the system. Then the implementation of the 
system can be performed in a direct fashion exploiting the facilities provided by the 
BESA application framework. 

2.1 Abstract Model  

The BESA abstract model is supported by three principal concepts, which provide a 
theoretical frame that integrates a behavior-oriented, event-driven and social based 
approach in a coherent structure. 

• Behavior-oriented: agents are composed by a collection of behaviors, simple 
entities charged of the treatment of a set of related events.  

• Event-driven: asynchronous events unleash the behavior execution. They 
represent signals that could be perceived by the agents. The behavior 
execution is controlled determined by a guard based selector mechanism; 
guards forbid events to be processed if a desired condition is not attained. 

• Social-based: the multi-agent system is created to form a social organization, 
where well-known communication patterns can be used; it is also possible to 
utilize mediator agents that help in the correct development of interaction 
protocols between agents. 

BESA is a concurrent oriented architecture; agents are internally seen as a 
multithread system and the non-determinism, implicit in an event driven system, is 
managed by a select (alting) mechanism. 

2.2 Agent Level  

The agents give a response to events coming from the environment or from other 
agents. BESA events have a specific semantics and are marked with an event type 
label. The agent has an associated treatment for each type of event. The treatment of 
an event must include the rational response of the agent. When processing an event, 
the data attached to the event and the internal state must be taken into account. The 
response to an event can be produced by any kind of decision mechanism (neural 
networks, fuzzy logic, procedural code, rule based system, etc.). This response can 
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include: the selection of the appropriated actions that must be executed, sending a 
new event to other agents, and the modification of the internal state of the agent. 
Events exchanged between agents usually follow well-defined communication 
patterns, known as interaction protocols. 

A BESA agent is structured with three main components: the channel, a set of 
behaviors and the agent state. Figure 1 shows these components and the way they are 
connected. The channel manages a mailbox where events are received, providing the 
unique entry point to the agent. The received events are assigned to different ports 
depending on their event type. Finally, they are transferred to the correct behavior, if 
the guard condition is verified. 

The behavior is an execution space that is activated when an associated event is 
received. Then the corresponding treatment is executed, thus producing the rational 
response to the received event. An agent can have several concurrent behaviors, thus 
allowing to process several events at the same time. Notice that the way that the 
parallel execution is performed depends on the capabilities of the executing 
environment (hardware and software). Incoming events are received by the channel 
and transferred to a queue in the appropriated behavior; events received by the same 
behavior are processed in a sequential order. A guard verifying function and a 
treatment function are associated to each type of event. 

The agent state provides a mechanism to store information about the agent, the 
environment, other agents and the global system; it is used to keep data in a persistent 
way. This information usually is used in the treatment of events. The state is a 
structured shared memory; thus, the concurrent access to this space must be 
synchronized. The synchronization could be implemented with semaphores or other 
operating system mechanisms. 

2.3 Social Level  

The social level aims to provide a set of predefined mechanisms and interaction 
protocols that could be directly used to manage agent interaction. Some of the BESA 
cooperation and communication services provide specialized ready to use agents that 
act as mediators in the social organization. For instance, the group communication 
service uses a mediator agent, actuating as a router, distributing events in the same 
order to all the agents subscribed to the group. A more detailed presentation of the 
social level is out of the scope of this paper.  In [17], there is a more detailed 
description of this level. 
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Fig. 1. Internal structure of a BESA Agent. 

 

 

 

Fig. 2. BESA System Layer Model. 

2.4 System Level  

The system level is formed by a set of agent containers running in physical or virtual 
machines. The container can be seen as the execution space for the agents (Figure 2). 
A BESA container has a local manager in charge of handling the agent’s life cycle 
and the directory services. The container also assures the correct communication 
between agents “living” in different containers. The system level is designed to 
comply with the FIPA standard [11]. The inter-agent interaction in the same container 
is performed without the local manager intervention. 

In order to make easy the communication between agents, BESA includes a 
directory service. The white pages component allows to locate agents by an ID. The 
yellow pages component makes possible to locate a group of agents that can provide a 
specific service. 

3 BESA-ME DESIGN 

The goal of the BESA-ME design is to find how to implement the BESA model in an 
embedded system, taking into account the BESA requirements and the constraints of 
this kind of platforms. The more important operating requirements of a BESA 
framework are: the management of the shared resources and shared memory spaces, 
and the multi-task operation and the concurrent treatment of events. 

Real time operating systems are the proper tool to provide the services required to 
implement BESA-ME. In particular, the communication and synchronization of the 
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agent behaviors requires semaphores and messages queues with blocking sending. 
The concurrent operation of agents and their behaviors can be achieved by a multitask 
preemptive operating system kernel. As BESA-ME is a framework for the 
construction of embedded applications, usually implemented in micro- controllers and 
DSPs, it is convenient to use a Real Time Operating System (RTOS) to provide the 
required functionalities [5]. A BESA-ME application can be seen as a layered 
structure, as shown in Figure 3. Upper layers use the abstraction and services 
provided by the lower layers. The user application is designed using the abstraction of 
the BESA abstract model. The BESA-ME components are implemented as concurrent 
tasks using the inter-task communication mechanisms provided by the RTOS. 

Finally, it is essential to adjust the BESA general model in order to fit the 
constraints of a practical embedded application. In the BESA-ME implementation 
model, some BESA elements are excluded in order to improve the performance and 
reduce the amount of required memory. The conditions of the guard selector 
mechanism are eliminated, thus reducing the control of the non-determinism implicit 
in an event driven system, but improving the filtering speed of events in the channel 
and allocating more memory to store events in the ports. In the container only the 
white pages directory is used, so the agents can locate an agent if they know its 
“alias”. 

 

 
Fig. 3. Layers in a BESA-ME application. 

4 Implementation 

BESA-ME has been successfully implemented for the microcontroller family PIC18F 
and the DSP dsPIC60F. The available RTOS that were selected as candidates to 
support the BESA-ME implementation include the Salvo-RTOS [12], the µC/OS-II 
[13], the CMX-TINY [14] and FreeRTOS [15]. Though several of the studied RTOS 
were offered the required services, after a detailed analysis of their functionalities, the 
FreeRTOS™ was selected. It was chosen because it’s a RTOS with a GNU license, it 
is well-structured and easy to use; it also supports many microprocessors, micro-
controllers and DSPs. 
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4.1 Agent Level  

The BESA agent is modeled by a data structure called stAgentBESA. It contains 
pointers to the agent shared state and channel, an array of pointers to the behaviors 
associated to the agent and the agent handler that contains the alias and the agent id. 

 

 
Fig. 4. BESA-ME agent level model. The boxes represent the data structures of the agent. 

The Channel Task 
The Channel Task has been implemented as a RTOS task, which is blocked waiting 
for incoming events. This waiting mechanism is implemented using a RTOS message 
queue service. When an event is received in the Channel Reception Queue this task 
looks for the incoming event type and compares it with the defined registered ports; if 
a match was found, the channel task sends a message to the behaviors interested in 
this event type. The same code is used to implement and create the required channel 
instances thanks to the parametric data structure used to represent an agent. When an 
agent is built, a channel task is created. A similar approach is used for the behaviors 
tasks. The channel parameters are contained in a data structure that includes a pointer 
to the channel reception queue, an array of pointers to the channel ports and some 
control variables. 

The Behavior Task  

The behaviors have been implemented as RTOS tasks, which are blocked waiting for 
messages sent from the channel. The messages contain the event attached data and a 
pointer to the adequate treatment function. The association between event types and 
their treatment functions is defined when the guards are created and bind to ports. 

When a message is received, the adequate treatment function is executed; it 
receives the event data and a pointer to the agent state. The state is a shared memory 
that has a read/write protection mechanism built with a binary semaphore. In the 
treatment function the microcontroller peripherals are used, mathematic operations 
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are performed, the external hardware is controlled, events to other agents are sent, and 
the logic that implements the rationality of the agent is included. 

4.2 System Level  

An agent system, implemented using BESA-ME is a distributed system composed by 
one or more BESA containers running in one ore more physical or virtual machines 
(Figure 5). In BESA-ME, there is only one container running in each processing 
device (microcontroller or DSP). Each container has a unique ID registered in the 
white pages directory. When a send event service is invoked, a search for the address 
of the agent is performed. If the destination agent exists in the local container, the 
event is directly sent to the appropriated message queue. If the destination is not local, 
the event is sent to the other registered containers; only the container where the 
receiver agents exist takes into account the event and transfers it to the appropriated 
agent. 

 

 

Fig. 5. BESA-ME System Layer 
Model. 

 

 
Fig. 6. Percentage of events received successfully by an 
external agent. 

 
In the actual implementation of BESA-ME, the communication between containers 

is achieved through the use of a wired bus and the I2C low level communication 
protocol. The I2C protocol has been implemented in an interrupt service routine. The 
BESA-ME communication process is controlled with the I2C control bits at the 
physical layer and a BESA acknowledge to inform if the event has been taken 
properly by the destination agent. The information required to construct event and 
acknowledgment packets is written in a transmit buffer protected by a binary 
semaphore. The semaphore is free when the whole message has been send. Another 
semaphore prevents that one other local agent start an external communication before 
the reception of a pending acknowledgment packet. 
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5 Experimental Results  

In order to verify that the BESA-ME execution is correct, a test protocol has been 
designed. The controlled independent variables include the task’s stack size, the 
number of BESA-ME elements (agents, behaviors, guards) and the event production 
frequency. The measured dependent variables include the response time of the system 
to extern and local events, the number of errors in the inter-agents communication, 
and the evaluation of the general performance of the system. 

The functional test was implemented in a couple of interconnected 
microcontrollers PIC18F8720 and PIC18F8620, with a processor frequency of 4 MHz 
and the I2C communication frequency of 100 KHz. This value of the intervenient 
variables were found by gradual increments. In the agent level the maximum number 
of behaviors is 11, with only one agent in the container. For one behavior the 
maximum number of guards is 20, with only one port (one event type). The maximum 
number of ports is 50. In the system level the maximum number of agents per 
container is 5. An extensive communication test was applied to the BESA-ME system 
level [16]. In summary, the results include the response time to events and the errors 
rate, in local and extern communication. In figure 6 can be observed how the event 
frequency affects the communication between agents placed in different containers. 

The AgentCoop project aims to build a multirobot platform. This multirobot 
system is controlled using the MRCC model (MultiResolution Cooperation Control), 
which provides a flexible framework to built cooperative multiagent systems. In order 
to deal with the complexity of this application, the AgentCoop architecture has been 
designed using the BESA conceptual model. The robotic system is composed by a set 
of agents that can be deployed in a distributed environment, where high performance 
stand alone computers coexist with embedded processors The design of the 
AgentCoop platform represents a complex problem with the characteristics previously 
analyzed in section 1. The robots of the AgentCoop project are controlled using the 
dsPIC30F6012. Thus, BESA-ME has been easily migrated to work with this platform, 
proving the flexibility and modularity of the actual BESA-ME framework. 

6 Conclusions  

BESA-ME is a useful tool to solve complex problems in embedded applications. It 
allows to split complex objectives into simpler tasks, and to allocate them to 
dedicated agents. BESA-ME solve the low level synchronization problems, providing 
a high level abstraction model to make a more easy design and implementation of 
system. The use of the BESA-ME model allow the development of MAS oriented 
distributed applications for microcontrollers in a easy and efficient way, reducing the 
development time. 

One of the more important BESA-ME facilities is the flexibility; if a system could 
not be fitted in only one microcontroller it can be distributed in two ore more 
processors only by changing configuration and declaration parameters of the 
middleware. The required external communication between micro-controllers is 
automatically detected and managed by the BESA-ME communication services. 

72



A comparative evaluation of BESA-ME is projected. This evaluation will be 
implemented comparing the AgentCoop development model for BESA-ME and the 
implementation model if using only an RTOS without BESA-ME. 
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Abstract. We are motivated by the tasking problem for UAVs in an adversarial
environment. In particular, we consider the problem where, in addition to purely
random noise in the observation process, the opponent may be applyingdecep-
tion as a means to cause us to make poor tasking choices. The standard approach
would be to apply the feedback-optimal controls for the fully-observed game, to
a maximum-likelihood state estimate. We find that such an approach is highly
suboptimal. A second approach is through a concept taken from risk-sensitive
control. For the third approach, we formulate and solve the problem directly as
a partially-observed stochastic game. A chief problem with such a formulation
is that the information state for the player with imperfect information is a func-
tion over the space of probability distributions (a function over a simplex), and
so infinite-dimensional. However, under certain conditions, we find that the infor-
mation state is finite-dimensional. Computational tractability is greatly enhanced.
A simple example is considered, and the three approaches are compared. We find
that the third approach is yields the best results (for such a case), although com-
putational complexity may lead to use of the second approach on larger problems.

1 Introduction

For a discrete deterministic game, one can apply dynamic programming techniques to
compute the value function (and “optimal” controls), defined over the state space. For
discretestochasticgames, the value function is defined over the space of all possible
probability distributions over the state space. Consequently, the problem is much more
computationally intensive. Finally, for discrete stochastic games with imperfect obser-
vations, the problem is yet more complex, and even simple games and their information
state formats become quite difficult to analyze.

We will be concerned here with a specific class of discrete stochastic games under
imperfect observations. The choice of this class will be affected by both the intended
application and computational feasibility considerations. The motivational application
here is the military command and control (C2 ) problem for air operations, with un-
manned/uninhabited air vehicles (UAVs). See [2], [5], [16], [21], [28], [31], [24], [25]



for related information. This application has specific characteristics such that we will
be able to construct a reasonable problem formulation whichis particularly nice from
the point of view of analysis and computation.

We first outline the mathematical machinery. The details of the development are
discussed elsewhere due to paper length issues. After discussion of the algorithms, we
apply the techniques on a seemingly simple problem in order to determine their effec-
tiveness. We refer to the players in the game as Blue and Red, where the Blue player
has imperfect observations. We compare three Blue approaches on this simple game
problem. The most naive is for Blue to simply take the maximumlikelihood estimate
of the Red state, and to apply a feedback control at this system state. As one can eas-
ily imagine, this approach is open to exploitation by Red deception. The second Blue
approach will apply a heuristic derived from the theory of Risk-Sensitive Control. This
technique is more cautious in its use of observational data.The third Blue approach (a
deception-robust approach) is through the direct solutionof the imperfect information
stochastic game. As one would expect, there is an improvement in outcome with the
risk-sensitive and deception-robust approaches described herein when compared with
the standard maximum likelihood/certainty equivalence approach (although there is a
critical parameter in the risk-sensitive approach). On theother hand, there are signifi-
cant computational requirements when using these new approaches.

2 Modeling the Game

We model the state dynamics as a discrete-time Markov chain.The state will take values
in a finite set,X . Time will be denoted byt ∈ {0, 1, 2, . . . , T}. We will consider only
the problem where there are exactly two players. Blue controls will take values in a
finite set,U , and Red controls will take values in a finite set,W . Given Blue and Red
controls, and a system state, there are probabilities of transitioning to other possible
states. We letPi,j(u,w) denote the probability of transitioning from statei to statej in
one time step given that the Blue and Red controls areu ∈ U andw ∈ W , respectively.
Also,P (u,w) will denote the matrix of such transition probabilities. Wemust allow for
feedback controls. That is, the control may be state-dependent. For technical reasons,
we will find that we specifically need to consider Red feedbackcontrols. Suppose the
size ofX is n, i.e. that there aren possible states of the system. Then we may represent
a Red feedback control asw ∈ Wn, ann-dimensional vector with components having
values inW . Specifically,wi = w̄ ∈ W implies that Red plays̄w if the state isi.
Define matrix˜P (u,w) by

˜Pi.j(u,w) = Pi,j(u,wi) ∀ i, j ∈ X . (1)

Let ξt denote the (stochastic) system state at timet. Let qt be the vector of lengthn
whoseith component is the probability that the state isi at timet, that is the probability
thatξt = i. Then if Blue playsu and Red playsw, the probability propagates as

qt+1 = ˜P ′(u,w)qt. (2)

We suppose there is a terminal cost for the game which is incurred at terminal time,
T . Let the cost for being in terminal stateξT = i ∈ X be E(i), which we will also
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sometimes find convenient to represent as theith component of a vector,E (where we
note the abuse of notation due to use ofE for two different objects). Suppose that at time
T − 1, the state isξT−1 = i0, and that Blue playsuT−1 ∈ U and Red playsw ∈ Wn.
Then, the expected cost would beE[E(ξT )] = q′T E whereqT = ˜P ′(u,w)qT−1 with
qT−1 being1 at i0 and zero in all other components.

We also need to define the observation process. We suppose that Red has perfect
state knowledge, but that Blue obtains its state information through observations. Let
the observations take valuesy ∈ Y . We will suppose that this observation process can
be influenced not only by random noise, but also by the actionsof both players. For
instance, again in a military example, Blue may choose whereto send sensing entities,
and Red may choose to have some entities act stealthily whilehaving some other en-
tities exaggerate their visibility, for the purposes of deception. We letRi(y, u, w) be
the probability that Blue observesy given that the state isi and Blue and Red employ
controlsu andw. We will also find it convenient to think of this as a vector indexed by
i ∈ X .

We suppose that at each time,t ∈ {0, 1, . . . T − 1}, first an observation occurs, and
then the dynamics occur. We letqt be the a priori distribution at timet, andq̂t be the a
posteriori distribution. With this, the dynamics update of(2) is rewritten as

qt+1 = ˜P ′(ut,wt)q̂t (3)

with controlsut,wt at timet. The observation, sayyt = y, at timet updatesqt to q̂t

via Bayes rule,

[q̂t]i =
P (yt = y |ξt = i, u, w)[qt]i

∑

k∈X
P (yt = y |ξt = k, u, w)[qt]k

. (4)

Then (3), (4) define the dynamics of the conditional probabilities.

2.1 Risk-Averse Controller Theory

In linear control systems with quadratic cost criteria, thecontrol obtained through the
separation principleis optimal. That is, the optimal control is obtained from thestate-
feedback control applied at the state given by

x = argmax
i

[qt(i)] .

A different principle, thecertainty equivalence principle,is appropriate in robust con-
trol. We have applied a generalization of the controller that would emanate from this
latter principle. This generalization allows us to tune therelative importance between
the likelihood of possible states and the risk of misestimation of the state. Let us moti-
vate the proposed approach in a little more detail.

In deterministic games under partial information, the certainty equivalence principle
indicates that one should use the state-feedback optimal control corresponding to state

x = argmax [It(x) + Vt(x)] (5)

whereI is the information state andV is the value function [13] (assuming uniqueness
of theargmax of course). In this problem class, the information state is essentially the

76



worst case cost-so-far, and the value is the minimax cost-to-come. So, heuristically, this
is roughly equivalent to taking the worst-case possibilityfor total cost from initial time
to terminal time. (See, for instance, [20], [17], [22], [29], [30].)

The deterministic information state is very similar to thelog of the observation-
conditioned probability density in stochastic formulations for terminal/exit cost prob-
lems. In fact, this is exactly true for a class of linear/quadratic problems. In such prob-
lems, theIt term in (5) is replaced by the log of the probability density,and a risk-
sensitivity coefficient appears as well. Although we are outside of that problem class
here, we nonetheless apply the same approach, but where now the correct value of this
risk-sensitivity parameter is not as obvious. In particular, the risk-sensitive algorithm is
as follows: Apply state-feedback control at

x∗ = argmax
i

{log[q̂t(i)] + κVt(i)} (6)

where q̂ is the probability distribution based on the conditional distribution for Blue
given by (3), (4) and a stochastic model of Red control actions, andV is state-feedback
stochastic game value function (c.f. [13]). Here,κ ∈ [0,∞) is a measure of risk aver-
sion. Note thatκ = 0 implies that one is employing a maximum likelihood estimatein
the state- feedback control (for the game), i.e.argmaxi{log([q̂t]i)} = argmaxi{[q̂t]i}.
Note also (at least in linear-quadratic case wherelog[q̂t]i = It(i) modulo a constant),
κ = 1 corresponds to the deterministic game certainty equivalence principle [17], [20],
i.e. argmax{It(i) + Vt(i)}. As κ → ∞, this converges to an approach which always
assumes the worst possible state for the system when choosing a control – regardless of
observations. (See [28] for further discussion.)

2.2 Deception-Robust Controller Theory

The above approach was cautious (risk averse) when choosingthe state estimate at
which to apply state-feedback control. We now consider a controller which explicitly
reasons about deception. This approach typically handles deception better that the risk-
averse approach, but this improvement comes at a substantial computational cost. For
a given, fixed computational limit, depending on the specificproblem, it is not obvious
which approach will be more successful.

Here we find that the truly proper information state for Red isIt : Q(X ) → R,
whereQ(X ) is the space of probability distributions over state spaceX ; Q(X ) is the
simplex inℜn such that all components are non-negative and such that the sum of
the components is one. We let the initial information state be I0(·) = φ(·). Here,φ
represents the initial cost to obtain and/or obfuscate initial state information. The case
where this information cannot be affected by the players maybe represented by a max-
plus delta function. The information state at timet evaluated at probability distribution
q, It(q), essentially represents the cost to the opponent to generate distributionq as
the naive/Bayesian distribution in a Blue estimator. That is, through obfuscation of the
initial intelligence and use of controlswr up to timet, the propagation (3), (4) would
lead to someq at timet if such wr were known.It(q) would be the maximal (worst
from Blue perspective) cost to generateq by any Red controls that would yield that
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particularq at timet. Although Blue does not know the Red controls, it can nonetheless
computeIt(·). For details on this propagation and theory, see [26].

In the case here, where the state-space is finite of sizen = #X ,Q is some a simplex
in IRn. Thus,It belongs to a space of functions over ann−1 dimensional simplex, and
consequently an element of an infinite-dimensional space. However, in the cases where
φ is either a max-plus delta function, or a piecewise-continuous function,It is finite
dimensional. This is crucial to the computability of this controller. Note that in either
of these cases, the complexity ofIt is proportional (in the worse case) to(#W )t at the
t time-step. Pruning strategies for reduction of this complexity are critical (c.f., [23]).

We now turn to the second component of the theory, computation of the state-
feedback value function. In this context, our value function is ageneralizedvalue func-
tion in that it is a function not only of the physical state of the system, but also of what
probability distribution Blue believes reflects its lack ofknowledge of this true physical
state. The full, generalized state of the system is now described by the true state taking
valuesx ∈ X and the Blue conditional probability process taking valuesq ∈ Q(X ).
We denote the terminal cost for the game asE : X → R (where of course this does not
depend on the internal conditional probability process of Blue). Thus the state-feedback
value function at the terminal time is

VT (x, q) = E(x). (7)

The value function at any time,t < T , takes the formVt(x, q). It is he above minimax
expected payoff where Blue assumes thatq is the “correct” distribution forx at time
t, that at each time Blue will know the correctq, and that Red will know both the
true physical state and this distribution,q. In particular,q will propagate according to
(2), and the state will propagate stochastically, governedby (1). Loosely speaking, this
generalized value function is the minimax expected payoff if Blue believes the state to
be distributed byqr at each timer ∈ (t, T ], while Red knows the true state (as well as
qr). A rigorous mathematical definition can be found in [26]. The backward dynamic
program that computeVt from Vt+1 is as follows.

1. First, let the vector-valued functionM t be given component-wise by

[M t]x(q, u) = max
w∈W n

[

∑

j∈X

˜Pxj(u,w)Vt+1(j, q
′(q, u,w))

]

(8)

whereq′(q, u,w) = ˜PT (u,w) and the optimalw is

w
0

t = w
0

t (x, q, u) = argmax
w∈W n

{

∑

j∈X

˜Pxj(u,w)Vt+1(j, q
′(q, u,w))

}

.

2. Then defineLt as

Lt(q, u) = q′M t(q, u), (9)

and note that the optimalu is u0

t (q) = argminu∈U Lt(q, u).
(10)
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3. With this, one obtains the next iterate from

Vt(x, q) =
∑

j∈X

˜Pxj(u
0

t ,w
0

t )Vt+1(j, q
′(q, u0

t ,w
0

t )) = [M t]x(q, u0

t )

and the best achievable expected result from the Blue perspective is
V 1

t (q) = q′M t(q, u
0

t ). (11)

Consequently, for eacht ∈ {0, 1, . . . , T} and eachx ∈ X , Vt(x, ·) is a piecewise
constant function over simplexQ(X ). Due to this piecewise constant nature, propa-
gation is relatively straight-forward (more specifically,it is finite-dimensional in con-
tradistinction to the general case).

The remaining component of the computation of the control isnow discussed. This
is typically performed via the use of the certainty equivalence principle (cf. [1], [17]),
and we employ the principle here as well. To simplify notation, note that by (9) and (8),
for anyu,

Lt(q, u) = Eq

[

max
w∈W n

∑

j∈X

˜PXj(u,w)Vt+1(j, q
′(q, u,w))

]

.

Let us hypothesize that the optimal control for Blue is

um
t

.
= argmin

u∈U

[

max
q∈Q(X )

{It(q) + Lt(q, u)}

]

. (12)

In order to obtain the robustness/certainty Equivalence result below, it is sufficient
to make the following Saddle Point Assumption. We assume that for all t,

sup
qt̄∈Qt

min
u∈U

[

It̄(qt̄) + Lt̄(qt̄, u)
]

= min
u∈U

sup
qt̄∈Qt

[

It̄(qt̄) + Lt̄(qt̄, u)
]

. (A-SP)

This type of assumption is typical in game theory. Although it is difficult to verify for a
given problem, the alternative is a theory that cannot be translated into a useful result.
Finally, after some work [26], one obtains the robustness result:

Theorem 1. Let t̄ ∈ {0, T − 1}. Let I0, u[0,t̄−1] and y[0,t̄−1] be given. Let the Blue
control choice,um

t̄
, given by (12) be a strict minimizer. Suppose Saddle Point Assump-

tion (A-SP) holds. Then, given any Blue strategy,λ[t̄,T−1] such thatλt̄[y·] 6= um
t̄

, there
existsε > 0, qε

t̄
andw

ε
[t̄,T−1]

such that

sup
q∈Qt̄

{It̄(q) + Lt̄(q, u
m
t̄ )} = Zt̄ ≤ It̄(q

ε
t̄ ) + EX∼qε

t̄

{

E[E(Xε
T ) |Xε

t̄ = X]
}

− ε

whereXε denotes the process propagated with control strategiesλ[t̄,T−1] andw
ε
[t̄,T−1]

.

3 A Seemingly Simple Game

We now apply the above technology to an example problem in Command and Control
for UCAVs. This game will seem to be quite simple at first. However, once one intro-
duces the partial information and deception components, determination of the best (or
even nearly best) strategy becomes quite far from obvious.
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Fig. 1. Snapshot of Gameboard.

In this game the Red player has four ground entities (say, tanks) and the Blue player
has two UCAVs. The objective of Red player is to capture the high-value Blue assets
by moving at least one non-decoy Red entity to a Blue asset location by the terminal
time,T . Red can use stealth and decoys to obscure the direction fromwhich the attack
will occur, while the Blue player uses the UCAVs to destroy the moving Red entities.
Red entities do not have any attrition capability against the Blue UCAVs. Blue UCAVs
require at least two time steps to travel from one route to theother.

The simulation snapshot in Figure 1, is taken after time step2, from the graphic for a
MATLAB simulation that runs the example game. Red is moving its currently surviving
three entities (depicted as triangles) downward, while Blue is attempting to prevent any
Red entities from reaching the Blue asset through use of its UCAVs (depicted as blue
T’s). Red is currently employing a decoy on the right, while using stealth on the left.

Winning and losing are measured in terms of the total cost at the terminal time. The
cost at terminal time is computed as follows: each Red surviving entitiy costs Blue1
point and if Blue loses the high-value asset, it costs Blue20 points.
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4 Comparison of the Approaches

Let us briefly foray into a comparative study between the naive approach (i.e., feed-
back on maximum-likelihood state), the risk-averse algorithm and the deception-robust
approach for Blue. The critical component of the risk-averse approach is the choice of
the risk level,κ. For the example studied in this chapter we varyκ between0 and10
to demonstrate the nature of the risk-averse approach in general. Firstly, for the case
κ = 0, we have the risk-averse approach equivalent to the naive approach; apply the
state-feedback control at the MLS estimate. Asκ increases we expect the approach to
achieve a lower cost for Blue, since it is taking into accountthe expected future cost
V (Xt) (as a risk-sensitive measure). Note however that in the adversarial environment
the effect of the Red player’s control on the Blue player’s observations has more com-
plex consequences than that of random noise. As shown in the Figure 2, the risk-averse
approach gets the best cost for Blue atκ between0.5 and0.6 (note again that this choice
will be problem specific). Asκ increases beyond this point, the expected cost begins in-
creasing, and has a horizontal asymptote which correspondsto a Blue controller which
ignores all the observations and assumes the worst-case possible Red configuration.

0 1 2 3 4 5 6 7 8 9 10
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15

20
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V
a
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Risk−Averse

Maximum Likelihood State

Deception−robust

Comparing Different Blue Approach

Fig. 2. Comparison of Approaches.

The bumpiness in the results is due to the sampling error (8000 Monte Carlo runs
were used for each data point in the plot.) Also note that for largeκ, the risk-averse
approach does worse than the naive approach. For this specific example, the risk-averse
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approach does not achieve the same low cost as achieved by using the deception-robust
approach.
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Abstract. In this paper we present a system for localizing a team of soccer robots
using ultrasound. The proposed system uses chirp signals to obtain a better signal
to noise ratio with good time resolution and improved interference immunity.
An array of four ultrasonic sensors is used to obtain spatial diversity and reduce
the localization error. An efficient DSP algorithm for base-band conversion and
decimation of the received pulses is also presented. The proposed system based
on the TI DSP 2812 is very efficient and allows the localization of the robots up
to 8 meters with an angular error with a maximum standard deviation of 2°.

1 Introduction

Ultrasonic Sensors (USS) systems are widely used in robotics for obstacle localization
and mutual robot localization [1], [2]. Most of the commercial available ultrasonic sys-
tems use a sinusoidal pulse to measure the Time of Flight (TOF). Usually these systems
perform badly in the presence of interferences and various authors have presented more
complex alternatives using different types of modulation of the emitted ultrasonic pulse
[3] and [4].

This paper describes an ongoing work to build a localizationsystem, using USS
for a team of soccer robots. The main achievements of this work are the efficient im-
plementation of the baseband converter of the received bandpass chirp pulses, and the
array with four sensors using an algorithm that integrates several measurements in time
and space resulting in a small error for distances up to 8 meters.

The specifications for this system require that it should be able to locate each of
the mobile robots (MR) with an accuracy better than±0.5 meters for distances up to 8
meters.

Since the goalkeeper has reduced mobility and its position can easily be determined
by the vision location system, all the positions of the otherrobots are referenced to its
position. The goalkeeper has an array of four aligned sensors at 20cm from each other
as can be seen in figure 1. Each field MR has four emitters and receivers equally spaced
over a circle and working like a transponder. The measurement of the position of each
MR is performed in the following way: the goalkeepere emits an ultrasound start signal,
then each MR answer aftern×50ms wheren is the MR number ID. This guarantees the
time interleaving of the answers. The goalkeeper evaluatesthe distance to each robotn

by
dn = c(Tn − n × 50ms) = cTOFn, (1)



whereT is the total measured time between the start signal and the received signal
from the MR,TOF is the time of flight andc the sound speed.

2 Localization System

A previous version of the localization system had only two receivers located 20cm
apart. This system was very sensible to small errors in the TOF measurements leading
to an unusable system [5]. We solved this problem by acting onvarious aspects of the
system. Firstly, we increased the applied voltage to the transmitter from 8 to 16Volts.
Then we built an array with four aligned sensors spaced 20cm from each other to obtain
spatial diversity and as a consequence increased stabilityin position evaluation. Finally,
we improved the algorithm that evaluates the(xm, ym) by integrating several sets of
four measuresTi to get an extra gain in the position stability.

The digital signal processing of the localization system iscarried out by a DSP2812.
If all the digital signal processing was performed at the sampling frequency of 160kHz,
the DSP 2812 would not have enough processing power to calculate the TOF for the four
channels. In order to circumvent this limitation, we implemented a baseband converter
that outputs the decimated quadrature and phase componentsof the input signal. The
baseband converter was implemented directly in DSP2812 assembly language and it
uses about 50% of the available DSP processing power. The baseband converter reduces
the sampling frequency by a factor of 32, from 160kHz to 5kHz.The processing of the
converter output is much less demanding on the processing power and was implemented
in C.

2.1 Time of Flight Measurement

The transmitted chirp pulse is generated by sampling the signal

c(t) = h(t) cos
(

ω1t + βt2
)

, t ∈ [0 . . . T ] ,

with β = (ω2 − ω1)/(2T ), whereω1 andω2 are the initial and final frequencies of
the chirp,T is the duration of the pulse andh(t) is a Hamming window. The window
h(t) is used to reduce the side lobes that appear on the autocorrelation of the chirp. The
carrier frequency is defined asωc = (ω1 + ω2)/2.

Figure 2 shows the chirp autocorrelation with and without the Hamming window.
The reduction of the sidelobes is important to avoid false peak detection.

Baseband converter For bandpass signals, the Nyquist theorem states that a signal
has to be sampled at a frequency not less than twice the bandwidth of the signal. Since
the bandwidth ofc(t) is typically 2kHz (in our system) it is possible to reduce the
sampling frequency to a much lower value (5kHz) by performing a bandpass to lowpass
transformation (see figure 3). This technique is well known and widely used on radar
and ultrasound sensing [6]. Several methods are available to perform this conversion
e.g. [7].
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the origin).
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Fig. 2. Cross correlation of the chirp (dotted line) and the chirp multiplied by a Hamming window
(solid line).

In this system we used low cost ultrasonic transducers from Murata that have a large
aperture (MA40S4R and MA40S4S), essential to cover all the field. Their bandpass
frequency response is centered at 40kHz with a useful bandwidth of 2kHz. The emitted
pulses are chirps ranging from 39 to 41kHz with a duration of 6.4ms. As the baseband
converted chirp has a bandwidth of only 1kHz the signal is decimated by 32 resulting
in a sampling frequency of 5kHz which is enough to represent the signal.

Figure 4 shows the structured of the baseband converter as implemented in this
work. We managed to simplify the calculations needed to perform the baseband con-
version by specifying an integer relation between the sampling frequency and the carrier
frequency and by integrating the modulators within the filters structure. The filter was
implemented using a polyphase decomposition [8]. In order to calculate both outputs
xi andxq, the system only has to performN/D product-accumulation operations for
each input signal sample, whereN is the number of coefficients of the filter andD the
decimation factor. As the filterH(z) hasN = 256 coefficients and the decimation fac-
tor is D = 32 the system only has to perform 8 mult/adds for each filter phase Hk(z),
with

H(z) =

D−1
∑

k=0

z−kHk(zD).
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The first simplification on the system is achieved by making the sampling frequency
four times greater than the carrier frequency (40kHz). Thisresults in the following
sequences at the output of the modulators

cos

(

2π
fc

fs

n

)

= {1, 0,−1, 0, . . .}

sin

(

2π
fc

fs

n

)

= {0, 1, 0,−1, . . .}

with n ∈ Z. After the multipliers we have the following signals

x(n) cos

(

2π
fc

fs

n

)

= {x(0), 0,−x(2), 0, . . .} (2)

x(n) sin

(

2π
fc

fs

n

)

= {0, x(1), 0,−x(3), . . .} . (3)

We can see that each lowpass filter only has to process half thesamples because the
other half is zero. Using a polyphase decomposition of the lowpass filters we can move
the decimator from the output of the filters to within the filter structure.

Finally, as the signals at the input of the filters have half ofthe samples equal to zero
and noting that both lowpass filters are equal, we can add the two signals from (2) to
obtain the signal

x(n) [cos(ωcn) + sin(ωcn)] =

= {x(0), x(1),−x(2),−x(3), . . .} .

If the decimation factor is even we can decompose the decimators in the polyphase
filter structure as shown in figure 4 where the input signal is separated in two different
phases. The phase corresponding to the signal from (2) will be processed by the even
filter phases, while the signal from (3) will be processed by the odd filter phases. At the
output of the filter we have two summations, one for each filterphase obtaining the two
outputs, the in-phasexi and the quadraturexq.

This compact structure allowed the optimization of the assembly code by minimiz-
ing the need of pointer manipulation.

×

×

cos(2πfc /fsn)

H(z)

H(z)

↓D

↓D
Cxq(n)

xi(n)

|x| Peak 
Detection

y(n)x(n)

sin(2πfc /fsn)
xc(-n)

Fig. 3. Block diagram of the base band converter.
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H1(z)
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Z-1
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↓2

↓2

↓2

φ1

φ2

φ3

+

+

+

+

xq (n)

xi (n)
{x0,-x2,...}
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{x1,-x3,...}

{-x2,x4,...}

{-x3,x5,...}

↓D/2

↓D/2

↓D/2

↓D/2

Fig. 4. Equivalent baseband converter implemented in an efficient way.

Envelope Interpolation The envelope of the correlator output signal needs to be com-
puted in order to determine the time position of its peak. Since the sampling period of
the signal is1/5000 = 0.2ms, the system cannot directly discriminate time differences
smaller than this limit. In order to improve the time resolution of the peak detection we
followed the [7] approach and interpolated the envelope of the decimated signal using
quadratic interpolation.

It is well known that there is a unique quadratic function that passes through any
three points. Moreover, the interpolating polynomial of degreeN−1 through the points
y1 = y(t1), y2 = y(t2), y3 = y(t3) is given explicitly by Lagrange’s classical formula,
presented in equation (4) forN = 3,

y(t) =
(t − t2)(t − t3)

(t1 − t2)(t1 − t3)
y1+

+
(t − t1)(t − t3)

(t2 − t1)(t2 − t3)
y2+

+
(t − t1)(t − t2)

(t3 − t1)(t3 − t2)
y3.

(4)

From the previous equation we can get the maximum ofy(t) by finding the valuet
that nulls the first derivative ofy(t). This value is given by

t =
t3(k1 + k2) + t2(k1 + k3) + t1(k2 + k3)

2(k1 + k2 + k3)

where
k1 =

y1

(t1 − t2)(t1 − t3)

k2 =
y2

(t2 − t1)(t2 − t3)
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k3 =
y3

(t3 − t1)(t3 − t2)

The TOF is obtained by subtracting, fromt, all the delays introduced by the hard-
ware, the software and the time multiplexing.

2.2 Position Estimation via Data Fusion

The position estimation is based on the TOF data fusion method [9], by combining esti-
mates of the TOF of the MR signal arriving at the four sensors of the Goalkeaper (GK).
As we will show, the problem can be solved by linear regression of several measures
from the four sensors. Considering that at a room temperature of 22° the speed of sound
is c = 344 m/s [10], the distance between the MR and each of the elementsof the USS
array is given by equation (1). By solving the following equation for all sensors:

d2

i = (xi − xm)2 + (yi − ym)2, (5)

wherei = 0, 1, 2, 3 is the number of the USS, we can estimate the coordinates
(xm, ym) of the MR. Thex coordinates of the four sensors of the array USS are given
by

x0 = −0.3, x1 = −0.1, x2 = 0.1, x3 = 0.3,

where the distances are in meters. They coordinate is zero for all sensors.
This simplifies equation 5 which can be rewritten as the following distance equa-

tions,
d2

i = (xi − xm)2 + y2

m (6)

Subtracting the (6) fori = 0, from the same equation fori = [1 . . . 3] we get,

d2

1
− d2

0
= x2

1
− x2

0
− (2x1 − 2x0)xm

d2

2
− d2

0
= x2

2
− x2

0
− (2x2 − 2x0)xm

d2

3
− d2

0
= x2

3
− x2

0
− (2x3 − 2x0)xm

(7)

By rearranging terms, the above three equations can be written in matrix form as




x1 − x0

x2 − x0

x3 − x0





[

xm

]

=
1

2





x2

1
− x2

0
− d2

1
+ d2

0

x2

2
− x2

0
− d2

2
+ d2

0

x2

3
− x2

0
− d2

3
+ d2

0



 (8)

which can be rewritten as

Axm = b, (9)

where

A =





x1 − x0

x2 − x0

x3 − x0



 , b =
1

2





x2

1
− x2

0
− d2

1
+ d2

0

x2

2
− x2

0
− d2

2
+ d2

0

x2

3
− x2

0
− d2

3
+ d2

0



 (10)
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The solution is given by 11 and is the value that minimises themean quadratic error.
This equation is implemented directly in the DSP, since for every measureA andb are
constants.

xm = (AT A)−1AT b (11)

They coordinate can be estimated by averaging the four values ofym,

ym =
√

d2

i − (xi − x2
m) (12)

which can be approximated by,

ym =
√

d2
m − x2

m, (13)

wheredm is the average of the fourd′is. For distances above one meter the error
produced by this simplification is less than 3%.

We can use temporal averaging to reduce the robot position estimation error. If we
combineN measures then solving the following system of equations











A0

A1

...
AN−1











[

xm

]

=











b0

b1

...
bN−1











(14)

produces a position estimation with less error at the expense of dynamic system
response to the movement of the robot. To obtain the localization results shown in this
work we usedN = 8.

3 Hardware Prototype

We chose the TMS320F2812 DSP from Texas Instruments to perform the signal pro-
cessing tasks. This DSP has 16 analog inputs sampled by a highspeed ADC. Figure
5 shows a block diagram with the architecture of the acquisition system. The USS are
mounted on a circuit board that performs a pre-amplification(gain=30) of the ultrasonic
signal followed by bandpass filtering.

The amplitude of the received signal varies with the inverseof the distance between
the transmitter and the receiver. To adjust the amplitude ofthe received signal to the
range of the ADC we built a Programable Gain Amplifier (PGA) for each channel. The
PGA is software controlled by the DSP.

As we intend to use the system to test different waveforms forthe emitted signals
we used an eight channel 12 bits DAC. The output amplifier connected to the ultrasonic
transmitter delivers 16Vpp.
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Fig. 5. The goalkeper has an ultrasonic transmitter (UT) to send the broadcast signal and an
USS array with four receivers (USS0 to USS3). The other robots have four pairs of transmit-
ters/receivers equally spaced around a circle.

Table 1. Anechoic chamber results:θr - real angle,θm - measured angle,||θr − θm|| - absolute
error of the measured angle andσθm - standard deviation for each angle.

θr θm ||θr − θm|| σθm
-90° -83.63° 6.37° 1.90°
-80° -69.31° 10.69° 0.21°
-70° -68.55° 1.45° 0.37°
-60° -62.27° 2.27° 0.40°
-50° -36.11° 13.89° 0.22°
-40° -42.72° 2.72° 1.20°
-30° -34.95° 4.95° 0.14°
-20° -19.15° 0.85° 0.31°
-10° -8.73° 1.27° 0.24°
0° 0.36° 0.36° 0.24°
10° 9.53° 0.47° 0.50°
20° 24.54° 4.54° 0.43°
30° 43.11° 13.11° 0.88°
40° 39.45° 0.55° 0.23°
50° 42.59° 7.41° 0.18°
60° 47.49° 12.51° 0.79°
70° 69.31° 0.69° 0.21°
80° 70.66° 9.34° 0.37°
90° 83.86° 6.14° 2.32°

4 Experimental Results

Anechoic Chamber Tests. To gauge the localization system we tested it on two dif-
ferent situations, in an anechoic chamber and in a robot soccer field. In the anechoic
chamber we only tested the angle measurement in the -90°≤ 0 ≤ 90° range using 10°
intervals with the transmitter at a distance of 7.5m. For each angle we took 5 measures.
The results of this test are shown in table 1.

In this experiment we observed that for angles between 30°and 60°the system was
very sensitive to small angle variations and that the received signal envelope was double
peaked due to multipath interference.

Robot Soccer Field Tests. We also performed localization tests in a robotics soccer
field. From this tests we got values for the absolute error position in a 1m grid for half
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the field from 0 to -3m in thex coordinate and from 1 to 8m in they coordinate. For each
position 50 measures were taken allowing the calculation ofsome statistical parameters
such as mean and the standard deviation of the measured distance and angle.

A X−Y plot with the test measurements and the estimated mean positions is shown
in figure 6.
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Fig. 6. Position measures obtained in the soccer field with the USS array.

The error associated with the polar coordinates, distance and angle, of a position
test are presented in figures 7 a) and b). The distance has a maximum standard deviation
σdm

= 1cm and the angle has a maximum standard deviation ofσθm
= 1, 84°.

From the results shown in figure 6 it is observed that as the distance increases,
the variability of the measured position also increases. This can be explained by the
degradation of the signal to noise ratio of the received signals as the distance increases.

5 Conclusion

In this work we presented a complete system to localize soccer robots. An ultrasonic
sensor array combined with time data fusion, reduced the standard variance of the angle
measurements from 10° to 2°.

To improve the signal to noise ratio of the received signal (for large distances) the
system transmitted chirp pulses with a duration of 6.4ms. Tobe able to process the four
receiver channels simultaneously with a low cost DSP we implemented an efficient
baseband converter.
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1 DCTI-Instituto Superior de Ciências do Trabalho e da Empresa, Portugal
luis.mota@iscte.pt

2 LIACC-Faculdade de Engenharia da Universidade do Porto, Portugal
lpreis@fe.up.pt

Abstract. One of the present day challenges in RoboCup is the development of
Open Co-operative teams, where different research labs join efforts to build a
common team. Such teams bring together robots with heterogeneous hardware,
architectures and control software, which hinders straightforward co-operation.
The robots in these teams might co-operate through a-priori strategic knowledge
and structured communication during the game. This paper presents the kernel
of a communication framework, defining a robotic soccer vocabulary,as well as
rules to manage communication.

1 Introduction

id[0..1]: String
team[0..1]: String
playerNumber[0..1]: PositiveInteger
colour[0..1]: Colour
width[0..1]: PositiveDecimal
depth[0..1]: PositiveDecimal
height[0..1]: PositiveDecimal
averageSpeed[0..1]: PositiveDecimal
kickingDevice[0..1]: Boolean
kickReach[0..1]: Decimal
kickAngleCSU[0..1]: Angle

Player

OwnTeamPlayer

OpponentTeamPlayer

Fig. 1. Player definition.

RoboCup3 has the goal of ”By the year 2050, develop a team of autonomousrobots
that can win against the human world soccer champion team.” This team will surely be
formed by heterogeneous robots, a selection of the best players, which will outperform

3 http://www.robocup.org



any single-origin team. If this is to be the case, how will such a team be built and
managed, and how will it play?

This subject has recently been the subject of a prospective analysis[1]. In the present
paper, a Communication Framework that leads to implementing these scenarios is de-
fined. To fulfil this scenario, there will be the need for a vocabulary relative to robotic
soccer, presented in section 2. The management of interactions between players during
the game must also be determined, and a proposal is made in section 3. Finally, we
present a summary and look into future work in section 4.

2 Robotic Soccer Domain Concepts

2.1 Physical Objects and Positioning

As pointed out in the scenario presented in [1], robots will have to share the world
state, having thus to use a proper vocabulary describing players. Information about
their colour and shape should also be expressable. They should be characterised by their
skills, like average motion speed and kicking device. This modelling can be seen as an
UML diagram in figure 1. Other relevant physical objects are the ball and the referee.
Positioning of objects should be shared among team-mates, to enhance the state of the

id[0..1]: String
height[0..1]: Decimal
trousersColour[0..1]: Colour
shirtColour[0..1]: Colour

Referee

id[0..1]: String
colour[0..1]: Colour
radius[0..1]: Decimal

Ball

id[0..1]: String
(...)

Player

PhysicalObject

Fig. 2. Physical Objects.

world. The absolute pose of an object is based on a right-handcartesian co-ordinate
system, with the origin placed at the centre of the field, the x-axis pointing at the blue
goal and the z-axis up. The robot’s orientation, i.e., the direction it is facing, is modelled
as a yaw angle relative to the x-axis on the xy plane. The full definition can be found in
figure 3.

The uncertainty in positioning determination must be dealtwith. In fact, no mea-
surement is entirely reliable and different sensors introduce different kinds of uncer-
tainty. We chose to use the Standard Uncertainty[2].AbsolutePositioningWithSUex-
tends ’AbsolutePositioning’. There can also be uncertainty about the identity of the ob-
served object (targetIdentificationConfidence). In the scenario in [1], most of the posi-
tioning exchanged are determined from the viewpoint of the robot, and are thus relative
to it. The class (RelativePositioning) represents relative positioning with respect to the
observer, useing polar co-ordinates. ’RelativePositioningWithSU’ extends the former.
Coach-Unilang[3] introduces a definition of field regions, including predefined areas
and freely definable areas like circles, which will be included in this framework.
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x: Decimal
y: Decimal
z[0..1]: PositiveDecimal
yaw[0..1]: Angle

AbsolutePositioning
observerID: String
theta: Angle
distance: PositiveDecimal
altitude [0..1]: PositiveDecimal
yaw[0..1]: Angle

RelativePositioning

Positioning

targetIdentificationConfidence[0..1]: Decimal
thetaSU[0..1]: Angle
distanceSU[0..1]: PositiveDecimal
altitudeSU[0..1]: PositiveDecimal
yawSU[0..1]: Angle

RelativePositioningWithSU
targetIdentificationConfidence[0..1]: Decimal
xSU[0..1]: Angle
ySU[0..1]: PositiveDecimal
zSU[0..1]: PositiveDecimal
yawSU[0..1]: Angle

AbsolutePositioningWithSU

PhysicalObject hasPosition
0..11

Fig. 3. Positioning related concepts.

2.2 Game Events, Player Moves, Actions and Tactics

During the game, some events occur and may be reported to team-mates, since they are
relevant to the world state. Such events are related to temporarily absent players, which
may influence decisions or even strategy changes. These events are: sentOff(player),
returnedToGame(player), malfunctioning(player) and functioning(player).

Co-operation can be enhanced by the intentional exchange ofmessages to co-ordinate
robots’ behaviour. When a robot well positioned to score a goal decides to ask its
team-mate holding the ball to perform a pass. Coach-Unilang[3] defines a set of ac-
tions, which will be used. Some of these actions have added arguments. These ac-
tions and moves are: shoot(), pass(player), forward(fieldRegion), dribble(direction),
run(direction), hold(), clear(), intercept(), tackle(player), mark( player), markPassLine
(player1, player2), gotoBall() and move(fieldRegion).

Tactics define the players’ preferred positioning on the field, as well as the team’s
pressure and mentality. These definitions will influence theplayers’ options. During a
game, a tactics change may have to be communicated to all the players. A set of classes
for this purpose can be seen in figure 4. Most of the attributesin the ’Tactics’ class have
a discrete set of possible values, e.g. fromveryDefensiveto veryOffensiveor from 0 to
100. There are predefined formations, like442and433. There may be the need to use
arbitrary formations, using theArbitraryFormationclass, as represented in figure 4 by
FormationPosition. In this class, the positioning of each player is characterised by an
horizontal and vertical position.playerRolewill define the attitude of the player.

3 Inter-robot Communicative Interactions

Since the information in the previous section is to be sharedbetween heterogeneous
agents, one also needs to establish how this exchange will bemanaged. The autonomous
agents’ community has been dealing with these problems for several years, and one can
profit from the results previously obtained.

The transmission of observed information needs only a simple interaction, where
one player (Sender) will inform some other players (Receivers). The acknowledgement
is optional. This interaction protocol is represented as anAUML diagram4. This proto-

4 http://www.auml.org
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teamMentality[0..1]
gamePace[0..1]
teamPressure[0..1]
riskTaken[0..1]

Tactics

433 442 ...
ArbitraryFormation

verticalPosition
horizontalPosition
playerRole[0..*]

FormationPosition

Player

1..11

1 1

Fig. 4. Tactics related concepts.

col will also be used to advertise choices. An example, wherea robot informs others that
it intends to shoot at the opposite goal, uses theintends(I ) operator[4], is as follows:

(inform :sender robot1 :receiver robot2 (...) :contents (I robot1 (shoot)))

Sender Receiver

inform(Contents)

acknowledge(Contents)

alternative

Sender: Player

alternative

Receiver: Player

request(Action)

accept(Action)

refuse(Action)

Fig. 5. Inform and Request interaction protocols.

Other interactions are more complex: if a player wants a team-mate to perform a
specific action, it will have to request this action, and the requested player will have
to either accept or reject the request. Such an interaction resembles the FIPA Request
Protocol[5] (figure 3).

4 Summary, Conclusions and Future Work

A communication framework has been defined, contributing tothe development of
joint, multi-partner, heterogeneous, co-operative and open RoboCup soccer teams. This
framework introduces a vocabulary defining a fundamental set of concepts needed by
robots during a match. Two kinds of interactions have been defined. The first kind al-
lows robots to share information about the game and their individual intentions. The
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second enables momentary co-operation that will lead to more complex moves involv-
ing several robots.

This framework is therefore a fundamental set of concepts and protocols for robots
to communicate. In order to take co-operation to a higher level, it will need concepts
such as role changes and set plays. Further, there is also theneed for game statistics,
which enable the modelling of the opponent team and could be the basis for a better
choice of tactics, prior to and during the game. All these concepts will be considered in
the future as possible extensions.
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Abstract. An anticipatory agent [1] is a hybrid agent which is able to predict
changes of itself and its environment. Such agents prove interesting [2] [3] [4]
in embedded systems such mobile robots. Indeed, they combine a reactive fast
layer with a cognitive layer capable to perform corrective actions to avoid un-
desired situations before they occur actually. We present in this paper a generic
architecture, that we plan to use as a guideline for developing anticipatory agents
embedded into robots for search & rescue missions. Our approach relies on soft-
ware components in order to explicit the anticipatory mechanisms.

1 Davidsson Quasi-Anticipatory Agent Architecture

From the definition of Rosen [5], Davidsson defines a very simple class of anticipatory
agent system: it contains a causal system S and a model M of this system that provides
predictions of S. As the model M is not a perfect representation of the reactive system,
this is called a quasi-anticipatory system. This architecture is rather coarse-grain. It is
only composed of 5 parts:

– Sensors: provide information about the agent environment.
– Effectors: allow the agent to act upon its environment.
– Reactor: drives the effectors in reaction to latest information provided by sensors.
– World Model: is an abstract view of the agent’s environment based on data collected

using sensors.
– Anticipator: modifies the reactor to avoid undesirable predicted world state.

2 MALEVA: A Software Component Model Expliciting Data and
Control Flows

Software component [6] is a programming paradigm that aims at going beyond Object-
Oriented programming from the point of view of modularity, reuse and improvement of
? This work is partially supported by the CPER TAC 2004-2006 of the region Nord-Pas de Calais

and the european fund FEDER.



software quality. Indeed, a software component is a software entity which explicits its
dependencies and interactions with other components and resources it relies on.

In this paper, we use the MALEVA hierarchical component model [7] in order to
define and implement our anticipatory hybrid agent architecture. Indeed, MALEVA
components are close to building blocks of the Brooks subsumption model in their
encapsulation and interaction through data exchange [8].

A MALEVA component is a run-time software entity providing encapsulation like
objects, while expliciting its interactions with other components. MALEVA compo-
nents interact only through their interfaces. Interfaces can be of two kinds: data inter-
faces or control interfaces. Data interfaces are dedicated to data exchange, while control
interfaces are dedicated to control flow.

A component can be either active or passive. A passive component is a component
that does perform some computation only after being triggered through one of its con-
trol input interfaces. Once the component computation is over, it stops until being again
triggered. Contrary to a passive one, an active component don’t need to be triggered to
act. It uses a thread in order to run autonomously.

3 Overview of our Generic Anticipatory Agent Architecture

As shown on figure 1, our agent architecture is an assembly of five components: sensors,
effectors, reactor, reaction ticker and anticipator. The first three parts (namely: sensors,
effectors and the reactor) are application specific. However, the reactor is instrumented
in order to provide two generic interfaces for modifications input: one for modification
data flow and the second for modification control flow. The former allows the anticipator
to provide modifications to be performed on the reactor, while the latter allows the
anticipator to trigger the modifications. These two interfaces can be viewed as the so-
called “meta-interfaces” in the work on Open Implementation [9], since they allow a
disciplined modification of the reactor.

Sensors

Anticipator

Instrumented
Reactor

Effectors

reactor
modification
interfaces

Reaction 
Ticker

Caption
Control flow output interface
Control flow input interface

Data flow output interface
Data flow input interface

Passive
Component

Active
Component

sensors ticks
interface

Fig. 1. Our Anticipatory Agent Architecture.

The “Reaction Ticker” is a generic active component that drives the agent’s reac-
tion. It defines the frequency at which the agent will sense its environment and react to
changes. Indeed, the “Reaction Ticker” triggers the Sensors component every m mil-
liseconds, where m is the duration between two ticks and depends on the application
context.
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The Sensors component3 collects data from the agent’s world and propagates it
through its data interfaces to both the reactor and the anticipator. Then, it triggers the ac-
tivity of both the anticipator and the reactor. When getting triggered, the reactor decides
the appropriate reaction to perform and translates this decision into data propagated to
the Effectors component4.

4 The Anticipator Component

The Anticipator component is an active composite component (see figure 2). It is active
since it includes its own ticker that allows it to run concurrently to the reactor. The
ticking frequency is higher than the “Reaction Ticker” one, since the anticipator has
to work faster than the reactor, in order to make useful predictions. By expliciting the
ticking control through the “Anticipation Ticker”, this frequency can be easily changed.
This feature is very important since it allows to tune the anticipator consumption of
resources (computing, energy, . . . ), particularly in case of embedded devices with low
capabilities. This frequency can even be changed dynamically, according to resource
evolutions, such as the battery level in a mobile robot.
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Fig. 2. The Anticipator Architecture.

Each tick of the “Anticipation Ticker” makes the Predictor component predict the
next world state and the next reactor action. Then, the Analyzer component analyzes the

3 Actually, the Sensors component can be a composite with multiple subcomponents corre-
sponding to different sensors.

4 Actually, the Effectors component can also be a composite with multiple subcomponents cor-
responding to different effectors.
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predicted world state and identifies undesired situations. In case of undesired states, the
“Modification Builder” component plans the appropriate modifications and transmits
them to the reactor.

It worth noting that, except the data input interfaces connecting the “World State
Builder” to sensors, all other interfaces are generic. Therefore this architecture can be
reused in multiple contexts.

5 Conclusion and Ongoing Work

In this paper, we draw the foundations for a generic agent architecture based on the
Davidsson anticipatory model. This architecture can be reused in multiple contexts and
may also serve at the basis for a methodology to design an anticipatory agent

Implementing the examples (”bot in a maze”) described in the Davidsson paper,
enabled us to prove that it is possible to propose a sufficiently generic architecture
for an anticipatory agent regarding the application domain. A more complete validation
will be soon carried out with experiments under development of a vacuum cleaner robot
simulation. We also plan to experiment our architecture on mobile robots in a search &
rescue project.

Another question we would like to explore is how to instrument the reactor com-
ponent and how to automate the transformation in order to introduce a modification
interface. This point is rather complex and varies according to the reactor architecture
and its properties. For example, in the case of the subsumption model [8], we need to
establish the interaction between the modification interface and the reactor layer.
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Abstract. Attention mechanisms of biological vision have been applied to ma-
chine vision for several applications, like visual search and object detection. 
Most of the proposed models are centred on a unique way of attention, mainly 
stimulus-driven or bottom-up attention. We propose a visual attention system 
that integrates several attentional behaviours. To get a real-time implementa-
tion, we have designed a distributed software architecture that exhibits an effi-
cient and flexible structure. We describe some implementation details and real 
experiments performed in a mobile robot endowed with a stereo vision head. 

1 Introduction 

The visual attention system in a mobile robot acts as a dynamical device that interacts 
with the environment to select what might be relevant to current active tasks. At the 
same time, it should maintain responsiveness to unforeseen events. More specifically, 
it should enclose the following functions [12]: selection of regions of interest in the 
visual field; selection of feature dimensions and values of interest; control of informa-
tion flowing through the visual system; and shifting from one selected region to the 
next in time or the “where to look next” task. 

Attention can be classified according to various aspects. In psychology, the terms 
generally used are active (voluntary) and passive (involuntary) attention [3]. From a 
stimulus point of view, there is overt or covert attention depending on the way the 
stimulus is attended [10]. Overt attention is the act of directing our eyes towards a 
stimulus source. Covert attention is the act of mentally focusing on a particular stimu-
lus without any motor action. Attending to the mechanism that drives attentional 
control, there are two kinds of execution methods: one is bottom-up or stimulus-
driven, which shifts attention to regions with visual features of potential importance; 
another is top-down or goal-directed, which uses knowledge of the visual features of 
the desired target to bias the search process.  

In recent years, visual attention has taken an important place in robotics research. 
Most of the proposed models have focused on pure bottom-up [2][12] and some on 
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top-down [9] attention. There have been some efforts on combining both forms of 
attention by weighting bottom-up saliency maps with top-down information [8,11]. 

The approach proposed in this paper is mainly characterized by the integration of 
different attention categories at a single system endowed with a flexible and adapt-
able architecture. The proposed system is modelled as a collection of processes col-
laborating to fix a visual target and to choose the next one. The complexity of the 
resulting global system requires the use of distributed software engineering tech-
niques. We use the Internet Communication Engine (Ice) middleware platform [1] 
and a custom component model specifically tailored to build distributed vision archi-
tectures. 

2 Architecture of the Proposed System 

The visual attention system proposed in this paper integrates several ways of attention 
to work successfully at different situations. It has been designed and tested on a mo-
bile robot with a stereo vision head. The net of processes that compose the system are 
a set of Ice components collaborating to fix a visual target. As shown in figure 1, the 
elements in the architecture are roughly organized in two branches that converge in 
the lower part of the graph. From this point a closed-loop connection feeds back to 
the upper initial part. The two branches divide the visual function in a manner analo-
gous to the “what” and “where” pathways proposed in neuroscience [7]. This division 
allows for a specialization of functions, dedicating specific resources to each branch 
and sharing what is common from lower-level processes. The “what” branch tries to 
find and track a specific target in the image using bottom-up computed regions of 
interest (ROI) and top-down specification of targets. The “where” branch extracts 
geometric information from stabilized ROI's and selects those regions that meet cer-
tain requirements, such as being on the floor plane, being too close or being in the 
current heading direction. The information from both branches has to be integrated 
solving an action selection problem. Given a current task or set of tasks, where to 
look next? This is accomplished by the lower component in the graph which outputs 
commands to the underlying motor system. In our system “looking to something” 
implies a 3D positioning of the robot with respect to the target, which we call a 3D 
saccadic movement. Following this reasoning, solving a generic navigation task such 
as going some-where following a predetermined set of (remembered) landmarks, 
amounts to generating the “correct” set of saccadic movements that will approach the 
current target while avoiding potential obstacles. This set cannot be computed a priori 
as long as it is the result of extended dynamical interactions between the robot and its 
environment. It is partially defined in the programmed code and partially selected 
from finding out how the outside world is. The whole system works as a complex 
mechanical device that is attracted towards some features and rejected from others. 
The specific interleaving between approaching and avoiding is given by an implicit 
time relation that links internal parameters and external geometry. 
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Fig. 1. Architecture of the visual attention system. 

3 Components and Connections 

Each component in the architecture is a C++ coded UNIX process using the Ice mid-
dleware. Similar to CORBA, each component supplies a public interface that can be 
used by other participants to call its methods remotely. We now describe the compo-
nents depicted in figure 1 and its connections: 
• Visual processor (VP): Acts as a vision server capturing images from the cameras 

and computing Harris-Laplace regions of interest at multiple spatial scales as de-
scribed in Lowe[4]. For each set of ROI's, it fills a shared double buffer to supply 
quick responses to client requests. 

• Head controller (HC): Head motor controller. Computes direct and inverse kine-
matics of the binocular head. It waits for client commands and passes them to a 
dedicated microcontroller that executes the PID loops. It keeps a copy of the state 
of the motors and of the head and can answer queries about them directly. 

• Base controller (BC): Base motor controller. Computes direct and inverse base 
kinematics and waits for client commands that are passed to a dedicated micro-
controller that executes the PID loops. It keeps a copy of the state of the motors 
and of the mobile base and can answer queries about them directly. 

• Vergence controller (VC): Works independently to ensure the convergence of 
both cameras to the same spatial point. Vergence control is done by a multi scale 
cross correlation between the centre of the dominant camera and the epipolar ho-
mologous window in the other one. It looks for the maximum of the resulting 
structure (maximum of the image window at the whole scale-space) and performs 
the shift in the slave camera that leads to the convergence of both. To optimize re-
sources the search is done in an increasingly wider window triggered by a failure 
in the direct matching of foveas. Vergence controller is a client of VP and HC.  
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• ROI Maintenance component (RM): Maintains a stable representation in time of 
recently perceived regions of interest. It provides a map of regions built in the 
camera reference system. It works as a short-term memory maintaining informa-
tion about each region such as: raw image window, permanence time, attention 
time and update time. As VP does, this component always maintains an available 
ROI list that can be sent to its clients on demand. 

• Categorization component (CC): Classifies regions of interest into known cate-
gories that can be used as landmarks. The current implementation uses Euclidian 
distance to compare SIFT[5] and RIFT[6] descriptors of candidate ROI's with pre-
viously stored examples. It accepts a target category so it tries to find a region 
compatible with the target and returns a list of candidates.  

• Spatial component (SC): Compute spatial and geometric features of the last re-
ceived ROI list and organize them in a head reference system. Properties computed 
by this component are: 3D position of the region using vergence and disparity; and 
planarity and plane orientation of the overall region by estimating the best homo-
graphy. More useful properties will be implemented in near future to determine lo-
cal shape with greater precision so more sophisticated hierarchical categorization 
can be accomplished in collaboration with CC. 

• Target selectors (TS): Integrate local representations from CC and SC according 
to some criteria. Attending to their functionality, they request for specific patterns 
and features to CC and SC, respectively. CC provides a list of classified regions 
that are integrated with spatial information from SC to construct a final saliency 
map. This map is used to select a focus of attention that can be sent to the tracker 
component. This last action only takes place when the component is active. TS are 
specialized on a specific action. They are in communication with other components 
outside the attention system that activate them to take the attention control in order 
to carry out an action. An example of target selector component is the landmark se-
lector, which is linked to a follow-landmark action. Another one is the obstacle se-
lector, related to an action of avoiding-obstacles. The attention-action relationship 
is not a mandatory condition. A target selector can be linked to an idle behaviour 
that allows the system to maintain a pure bottom-up attention. 

• Tracker component (TC): Receives the location of a region from the active TS 
and maintains the focus of attention on such region until another position is re-
ceived. To achieve this goal, the TC implements a predictive tracking algorithm 
that combines the distance among RIFT descriptors of the regions and normalized 
correlation in YRGB space. 

4 Interaction Dynamics 

The architecture just described provides an attentional mechanism that can be incor-
porated in a wider network of components adding behaviour-based control, task se-
lection, planning, topological maps and other abilities. In the experiment shown here, 
we use a couple of coordinating behaviours -approach and avoid- that activate the 
target selectors (TS's) of the attentional system. Together, they can be seen as a vis-
ual-goto-point (VGP) compound behaviour which is the basic serializing constituent 

109



of most complex navigation tasks. The attentional mechanism provided to VGP en-
dows it with inner dynamic loops that take care of target detection, recognition, 
searching and tracking, lost target recovery and unexpected obstacle detection. In 
addition, these features are the result of parallel activities that get serialized to gain 
access to the orientable cameras. 

When VGP activates, two activities take place simultaneously: a target landmark 
is downloaded to the attentional system through a TS, and another TS is activated to 
detect potential obstacles in front of the robot. Both TS's are coordinated in a very 
basic way by the VGP to achieve the current goal. The law to follow is hierarchical: 
“if there is free way, approach the target”. First, the landmark TS activates to search 
the target. Once it is fixated, the obstacle TS activates to locate potential hazards in 
the course towards the detected landmark. If the near space is free of obstacles, the 
cameras will search again the landmark and the base of the robot will reorient to-
wards the gaze direction and start moving forward. Then again, the obstacle TS will 
use its short term spatial memory representation and covert attention capabilities to 
gaze towards any close enough obstacle in the way. If it happens, the base will reori-
ent in a direction perpendicular to the pan angle in order to avoid the nearest obstacle. 
Once the danger is over, the landmark TS will regain control to relocate the target and 
establish a new heading direction. This alternating dynamics keeps going on until the 
goal landmark is within some specified distance and orientation. 

Several kinds of attention can be observed in the last example. When the obstacle 
TS chooses a target to attend to, it performs overt attention on the obstacle so avoid-
ance based on pan angle can take place. But when the landmark TS is waiting, it per-
forms covert attention on the target so it can be quickly fixated again when it gets 
activated. In a similar way, we can speak about bottom-up and top-down attention. 
ROI's detected by the VP drive attention in a bottom-up way selecting those areas of 
the image most informative. From this set, a few are chosen attending to task de-
pendent constraints such as target landmark or specific known geometric properties of 
obstacles. 

5 Experiments 

The visual attention system has been tested in a threaded mobile robot endowed with 
a stereo vision head. It encloses five degrees of freedom with digital PID controlled 
servos and two ISight Firewire cameras (figure 2). This type of robots has been de-
veloped in our Laboratory and is widely used in prototyping and algorithm testing. 

The architecture of components just described runs on a local cluster of com-
puters. Each process is an independent C++ application, which includes Ice objects 
and proxies to communicate with other processes. An Ice object is an entity used by a 
server to respond to client requests. An Ice proxy represents an Ice object local to the 
client that can communicate remotely to the server. Ice provides a remote method 
invocation capability that can use both TCP and UDP as the underlying protocol. In 
our current implementation, the network of processes is distributed among four 
physical processors – dual Opteron board for VP, HC and BC; 3GH-HT P4 for VC, 
TC and RM; and AMD64 dual core for CC, SC and TS- as seen by the Linux operat-
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ing systems. The computers are locally linked by a 1 Gb ethernet switch providing 
enough bandwidth for real time communication among components. 

 
Fig. 2. Robot used in the experiments. 

We have designed a simple experiment for initial testing and validation of the pro-
posed architecture. The robot has to localize and approach a landmark (star) in its 
near space avoiding an obstacle that blocks its heading direction. The running system 
incorporates all the components described before. As target selectors (TS's) we use 
landmark and obstacle selectors working in cooperation. Actions linked to selectors 
are approach and avoid, configuring a sort of visual goto-point. 
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i) j)
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g) h)
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Fig. 3. Experiment of visual navigation avoiding obstacles. 

Changes of attention alternating these two kinds of targets can be appreciated in 
the sequence above (figure 3). Initially, a) attention is fixated on the landmark and an 
action of approaching begins. Then, b) and c) frames, obstacles gain control of atten-
tion guiding the robot to avoid them. After several frames - d) - landmark is fixated 
again providing a new goal heading. To keep up with the new situation, the obstacle 
selector changes its focus of attention, e) and f). Once all the obstacles have been 
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avoided g), attention is again centred on the landmark making the robot to approach it 
and finally reach the goal position, j). 

6 Summary and Conclusions 

In this paper, we have shown an experiment in distributed visual attention on a mo-
bile robot with a stereoscopic head. Our goal has been to test the potential of combin-
ing ideas from visual neuroscience, distributed software engineering and robotics. We 
think that the proposed architecture will ease the way to model and implement more 
perceptual and cognitive capabilities in our robots. This first result shows that the 
complexity of distributed bottom-up and top-down attention can be integrated in a 
visual navigation framework to solve what we have called the visual-goto-point prob-
lem. Much work remains in this multidisciplinary area, but the possibilities offered by 
new multicore processors in conjunction with communications middleware will open 
new spaces for bio-inspired robotics modelling and building. 
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