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1. INTRODUCTION 
 
We have developed a powerful hierarchical segmentation approach for polarimetric SAR images [1]. Hoever, 

image segmentation and unsupervised classification are difficult problems. This paper proposes to combine both. 

A clustering process is applied over segment mean values. Only large segments are considered. The clustering is 

composed of a mean-shift step and a hierarchical clustering step. A new hierarchical clustering approach that 

integrates the mean-shift spatial constraint will be presented. The approach is applied on a 9-look polarimetric 

SAR image. Textured and non-textured image regions are considered. The K and Wishart distributions are used 

respectively. The obtained region groups constitute an important simplification of the image data. The fields are 

correctly delimited and small variations inside homogeneous areas are recognized  

 
The main task in remote sensing is the interpretation of the image. There is a need for tools to facilitate the 

realization of this complex task. This is the objective of automatic (unsupervised) classification techniques. In the 

more general framework of data analysis (any kind of data, not only images), this is referred to as clustering 

techniques [4]. In the next section, we will examine the relation between iterative clustering, hierarchical 

clustering and image segmentation and how we can move between them. Then, we present the segment clustering 

approach and it application on a textured polarimetric SAR image. 

 
2. CLUSTERING AND IMAGE SEGMENTATION 

 
The agglomerative hierarchical clustering algorithm starts by assigning each data point to a distinct cluster [4]. 

For N data points, we initially have N clusters. At each iteration, we consider all pairs of cluster (Ci, Cj), calculate 

a similarity measure or distance for each pair ( Di,j = D(Ci,Cj) ) and merge the 2 clusters which are the most 

similar or have the smallest distance. The iterative mean-shift [3] approach could be viewed as a generalization of 

the k-means technique [2], [5]. We can consider that the k centers are moved toward the modes of the probability 

density function (pdf). The mean shift could move every data points toward the modes.  
 



Image segmentation is a special case of clustering where clusters contain only connected pixels, i.e. for each 

pixel, you can go to any other pixel of the cluster by following a path inside the cluster [1]. It could be 

advantageous to used segmentation instead of clustering because of the utilization of spatial information. Pixels 

inside the same image field should be inside the same cluster, especially adjacent pixels. Grouping adjacent pixels 

should reduce the noise if they belong to the same field or class. It should be easier to cluster segment mean 

values than pixel values.  

 
At some point, we should consider grouping regions that are not adjacent, i.e. perform region clustering. Image 

regions with the same land use class could be in different parts of the image. Clustering regions produces region 

aggregates or region groups. Aggregates will have better estimation of the region common land use parameters. 

The discrimination between land use classes will then be improved.  

 
3. SEGMENTATION/CLUSTERING OF TEXTURED POLARIMETRIC SAR IMAGES 

 
We propose to apply a clustering process over segment mean values. The partition is produced by a powerful 

hierarchical segmentation approach previously developed [1]. We consider only large segments. The clustering is 

composed of a mean-shift step where region mean values are moved toward density mode and a hierarchical 

clustering step that produce K region groups/clusters. Small segments are then assigned to the closest region 

group. The obtained region groups constitute an important simplification of the image and a good initial 

classification map.   

 
The approach is applied on a 9-look polarimetric Convair-580 SAR image of the Mer Bleu area, Ottawa, Canada. 

The image (800x600 pixels) is show in Fig. 1 using the amplitude of the hh, vv and hv channels. The image 

contains crop field areas and forest areas. 

 
A textured image model is used [1], [6]. Following the scalar product model, the observed covariance matrix, T = 

Z, is the product of 2 random variables: a scalar texture component  with a gamma distribution and the speckle 

complex covariance matrix Z with a Wishart distribution. T follows the K distribution. For a region, the shape 

parameter  is estimated by the method of moment. We consider that the region is textured if 10 and non-

textured if 20. Between these 2 values, we use a weighted sum of the distance measures of both cases. The 

distance D used in the hierarchical segmentation, the hierarchical clustering and the mean shift processes is the 

likelihood ratio statistic D(Ci,Cj) = MLL(Ci) + MLL(Cj) – MLL(Ci Cj) where MLL(C) is the maximum log 

likelihood value calculated over segment/cluster C. For non-textured region, the pixel covariance matrix Z 

follows the Wishart distribution and MLL(C)=–nL ln(| |) [7]. For textured region, the pixel covariance matrix T 

follows the K distribution and 
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where n and  are the region size and covariance matrix [1]. K  is the modified Bessel function. L is the number 

of look.  

 
The following steps are applied to the test image (Fig. 1). 

1) The hierarchical segmentation algorithm is first used. We obtain a partition with 10,000 segments. Only 

segments of 20 pixels or more are used in the 2 following steps.  

2) The mean-shift algorithm is applied to modify the segment mean values. Values are moved toward higher 

probability density zone (the density mode). This is a kind of adaptive value filtering.  

3) The modified large segment values are clustered by hierarchical clustering. We obtain partitions with 200, 50 

and 20 groups of segments.  

4) The small segments are assigned to one of the region groups after mean shift filtering and maximum 

likelihood classification. The mean value of the covariance matrix for each group is calculated and assigned to 

every pixel in the group.  

 
The first merges in hierarchical clustering and segmentation are easy. The last merges involve segments or groups 

that are not really similar but can still belong to a same field or class. There is a large uncertainty about if it is a 

good merge or not. With 200 groups, many fields (image regions) are divided into parts belonging to different 

groups. This corresponds to identifying sub-class inside the field class. If we continue cluster merging, the sub-

class will be merged with other sub-classes, but will not necessary form the field class and the field will remain 

divided into parts. We decided to switch from cluster to segment merging to merge only adjacent segments. This 

is followed by clustering to obtain again 200 region groups. In Fig. 2, the regions are larger and the fields are less 

subdivided. There are many small regions that should ideally be removed. Fig. 2 represents good unsupervised 

classification result. The important fields are correctly delimited. The process was able to recognize small 

variation inside what we would have considered as homogeneous areas, for example, in the top right corner of the 

image.   

 
4. CONCLUSION 

 
Combination of iterative mean shift clustering with hierarchical clustering and segmentation has produced good 

unsupervised classification results. The important fields are correctly delimited and small variations inside 

homogeneous areas are recognized. A new hierarchical clustering approach that integrates the mean-shift spatial 

constraint is currently developed and will be presented. 

 



 

 
Fig 1 : Original polarimetric SAR image. 

 
Fig 2 : Class map with 200 groups and 4849 regions. 
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