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1. INTRODUCTION 

In recent years, there is a growing interest in ship detection, classification and identification by synthetic aperture 
radar (SAR) for its ability of all-weather and day-and-night operational capability. The reasons behind this trend 
are increasing marine crimes such as sea piracy, identification of ships responsible for oil pollution, and illegally 
operating ships. Some algorithms and ship detection systems have been proposed and tested, including those 
based on amplitude threshold, intensity K-distribution, combination with ship wake detection, wavelet transform, 
polarimetric analyses, constant false alarm rate (CFAR), and multi-look cross-correlation (MLCC) [1]-[10]. 
Different algorithms show different performance with certain room for improvements. One of the requirements 
for future ship detection systems is the accuracy improvement for detecting small ships with lower false alarm 
rate (FAR) [11]. For this purpose, we carried out an experiment of detecting small fishing boats whose sizes are 
comparable with the resolution cell of the Phased Array L-band SAR (PALSAR) on board of the Japanese 
Advanced Land Observing Satellite (ALOS) [10]. Among the algorithms considered in the experiment, we found 
that the MLCC algorithm could be improved by applying CFAR to the coherence images computed by MLCC. 
The present paper describes the summary of the ship detection by MLCC-CFAR applied to ALOS-PALSAR data: 
the detailed result can be referred to our recent publication [12].  

2. EXPERIMENTAL PROCEDURE 

The principle of the MLCC algorithm is first to produce two (or more) independent sub-images of a same scene 
from SAR raw data using sub-apertures of different center frequencies [4]. This multi-look processing is the basis 
of speckle reduction, i.e., inter-look random noise patterns are uncorrelated, while the images of deterministic 
targets are correlated. The procedure is then to compute the degree of cross-correlation between the sub-images 
using a small moving window. If the window contains only noise from the sea surface, the degree of cross-
correlation is low, but if it contains the image of a ship, the degree of inter-look cross-correlation is high. Thus, 
the images of ships can be extracted by thresholding the coherence image which is a map of the degree of inter-
look cross-correlation. The main problem is that it is difficult to automatically find the optimum threshold value 
for the coherence image. A solution to this problem is to apply CFAR to the inter-look coherence image. This 
process of the MLCC-CFAR algorithm is illustrated I Fig.1. 

Fig. 1 Block diagram of MLCC-CFAR processing for automatic detection of ships and accuracy improvement.  



Fig.2 Parameters of the fishing boats used for the experiment (left) and a picture of Type Ib boat (right). 

 In order to apply CFAR to a MLCC coherence image, a probability density function (PDF) which fits best to the 
image amplitude inside the moving window is sought. The moving window size was 9 x 9 pixels by taking into 
account the size of the fishing boats relative to the PALSAR resolution cell. By comparing the Akaike 
information criterion (AIC) [13] of Gamma, Weibull, Lognormal, and Rayleigh distributions, the Lognormal 
distribution was found to fit best to almost all data. Having selected the best PDF, the parameters for the estimated  
PDF were calculated by maximum likelihood estimation (MLE), and the threshold value was computed from 
numerical integration in an adaptive way for different positions of the moving window. For the computation of 
the threshold value, a probability false alarm (PFA) was set. Finally, the CFAR algorithm was applied to the inter-
look coherence image to extract the fishing boats. 

 In the experiment, three fishing boats of different sizes were deployed in the Tosa Bay, Kochi Japan as in Fig.2. 
The Type I boat was positioned approximately 1 km away from the shore, followed by Type II and Type III 
separated by 50 m. The largest boat Type I started cruising toward the corner reflector placed on the beach (see 
Fig.3) with the speed of 8 knots (4.12 m/s) at 10 minutes before the PALSAR data acquisition, and with two 
minutes time interval, Type II and Type III followed. The experiment was made at different PALSAR modes: 
FBS (Fine Beam Single) 21.5 HH, FBS 34.3 HH, FBD (Fine Beam Double) 41.5 HH/HV, and PLR 
(PoLaRimetric) 20.5 HH/HV/VH/VV, where the numbers after the modes are the off-nadir angles in degrees. 
Analyses were carried out for the FBS data only, and FBD and PLR data were not considered because they were 
not suitable for ship detection due to coarse resolution [10]. The FBS 21.5 and 34.3 data were acquired in June 21 
and July 30, both in 2006 and the resolution was 4.1 m in azimuth and 4.7 in range direction for both the data. The 
wind speed was 2.0 m/s and 1.0 m/s, and significant waveheight was 0.49 m and 0.35 m at the data acquisition 
times of FBS 21.5 and 34.3 respectively.  

3. RESULTS AND DISCUSSION

The amplitude image of FBS 34.5 data is shown in Fig.3(a), where the Type Ib, IIa, and IIIa boats are all visible.  
By applying AIC to the amplitude images, the Weibull distribution was found to fit best to the data, followed by 
K-distribution, Rayleigh, Gamma and Lognormal distributions [10]. The coherence image computed from the 2-
look images is shown in Fig.3(b) where the degrees of interlook coherence are also high for all three boats. From 
the AIC result, the coherence image was found to fit best to the Gamma distribution, followed by Lognormal, 
Weibull, and Rayleigh distributions. It should be noted that the transition of Weibull-distributed amplitude 
fluctuations to Gamma-distributed fluctuations in the coherence image was found by simulation and from the real 
data. Its theoretical interpretation requires further study.  Fig.3(c) is the enlarged image containing three boats. In 
order to extract the boats, the coherence image is thresholded with the threshold value defined by CT = C +N
STD, where C  is the mean coherence value, STD is the standard deviation within the moving window, and N is 
the thresholding parameter. In the thresholding process, pixels of values below CT are replaced by zero. Fig.3(d) 
and (e) are the coherence images after thresholding with N=2 and 6 respectively. It can be seen from Fig.3(d) that 
when N=2 all boats are visible but some surrounding noise is also present, and that by increasing the threshold 
parameter to N=6, surrounding noise decreases, but the image of Type IIIa boat also disappears as in Fig.3(e). On 
the other hand, all boats can be detected by applying MLCC-CFAR with little surrounding noise as in Fig.3(f).  

Boat type Type Ia, b Type IIa, b Type IIIa, b 

Length [m] 12.0, 14.6 10.7, 11.9 8.0, 9.2 
Width [m] 3.0, 4.0 3.2, 3.2 2.4, 2.5 
Depath [m] 1.2, 2.0 1.1 1.0 0.8, 1.1 

Tannage [tons] 11.2, 12.0 6.6, 9.7 2.2, 3.2 



Fig. 3 The images (a) and (b) correspond respectively to the amplitude and coherence image after applying 
MLCC to the FBS 34.3 data. The image (c) is an enlarged coherence image, and those (d) and (e) show the 
images after thresholding the coherence image (c) with the threshold parameter N=2 and 6 respectively. The white 
circles indicate the detected boats, and the white square implies an undetected boat. The image (f) is the result 
after MLCC-CFAR applied to the image (c). The image size of (a) and (b) is approximately 2.1 km in azimuth 
and 3.8 km in range direction. “CR” on the center-right is a triangular trihedral corner reflector of short-sided size 
1.98 m (the theoretical RCS of 30.6 dB) placed on the beach for the purpose of PALSAR calibration. 

PALSAR Modes MLCC (N=2) MLCC (N=4) MLCC (N=6) MLCC-CFAR 
FBS 34.3 2.74 x 10-2 (3) 7.31 x 10-4 (3) 3.56 x 10-4 (2) 2.17 x10-4 (3) 
FBS 21.5 3.06 x 10-2 (3) 9.83 x 10-4 (2) 2.50 x 10-5 (0) 8.88 x 10-3 (3) 

Table 1. Comparison of FAR by thresholding the coherence images with different threshold parameters N and the 
adaptive MLCC-CFAR method. The numbers inside the brackets show the number of detected boats. 

PALSAR Modes Boat Type N=0 N=2 N=4 N=6 MLCC-CFAR 
 Ib 25.6  32.0  59.9  64.7  66.9  

FBS 34.3 IIa 22.9  29.6  59.5  63.6  65.7  
 IIIb 21.6  27.6  51.0  0.0  65.4  
 Ia 15.6  28.6  43.8  0.0  38.3  

FBS 21.5 IIa 17.4  29.9  44.1  0.0  34.8  
 IIIa 15.6  22.8  0.0  0.0  31.6  

Table 2. Comparison of signal to background noise ratio [dB] by thresholding the coherence images with different 
threshold parameters N and the adaptive MLCC-CFAR method. 

The quantitative interpretation of Fig.3 is to compute the FAR values as listed in Table 1. By simple thresholding 
the coherence image, the FAR values decrease with increasing  N, but the Type IIIb boat cannot be detected when 
N=6 in the FBS 34.3. While, using MLCC-CFAR all three boats can be detected with a lower FAR value. The 
same trend can be seen for the FBS 21.5 data. For the FBS 21.5 data, the detection accuracy is lower because of 



higher sea state and smaller radar depression angle. As a result, Type IIIa boat disappears when N=4, and all boats 
cannot be extracted when N=6, but again using MLCC-CFAR all boats can be detected as in Table 1.  

 The magnitude of the coherence image of a boat is defined as the mean signal coherence amplitude divided by 
the mean background amplitude with zero pixel values below CT. This measure is termed as SNR (Signal to Noise 
Ratio) for convenience. Table 2 shows the SNR for individual boats, where a similar tend as for FAR can be seen. 
That is, SNR after thresholding of coherence images increases with increasing N, but drops to zero for the Type 
IIIa when N=6 for FBS 34.3, and for Type IIIa when N=4 and all boats when N=6 in FBS 21.5. This is because 
the signal amplitude is also thresholded out when N becomes large and replaced by zero. Again, MLCC-CFAR 
shows satisfactory performance in the SNR values for all coherence images of the fishing boats. 
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