(Ripple)

\[\begin{array}{c|ccc}
\text{Out} & 1 & 0 & 0 \\
\hline
\text{In} & 1 & 1 & 0 \\
\end{array} \]

\[f_{n+1} = f_n \]

Flip-Flop

Flop-Flop
2) Use "Master-Slave" Construction

Solutions:
1) Make CLK pulse shorted from the propagation delay.

Output will toggle when \(\overline{Q} \neq \overline{K} = 1 \). The output looks as \(Q' \) is

![Diagram](image_url)
An initial state.

Some times, if's also present @i.e., current asynchronous inputs.

F & K are "synchronous" inputs.

(Receiving edge)
(Leading edge)
(Paused edge)
(Falling edge)
(Receiving edge)
(Leading edge)
(Paused edge)
(Falling edge)

Flip-Flops
General Model for Clocked Flip-Flops

Recall:

D-FF

JK-FF
The basic cell

The correct input signals go

Preceding in order to generate

We need to begin the Set-Reset.

For a given characteristic table,

Reesign:

inputs

CLK

Q

Q

@ (ASYNCH)

Reset

Set

Reset/Reset

Set/Reset

(qwe, etc.)

Set/Reset
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Table of A 2-RS-FF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_{K} (D_{n+1}) 3 R</td>
</tr>
<tr>
<td>Basic Cell</td>
<td>Input (Input)</td>
</tr>
<tr>
<td></td>
<td>A (R-S) 3-state Cell</td>
</tr>
<tr>
<td></td>
<td>2-Type FF Logic</td>
</tr>
</tbody>
</table>
ECDC04

Clock Circuit

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Flip-flop "B"

Inputs

Clock

Comb. logic

Counters

From FF A to B
Table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

- **A**ssume **3**-**R** in **F** already **C**ompleted
- **C**onvert to **2**-**F**

Steps:

1. Verify that the **3**-**R** is compatible with the **2**-**F**.
2. Make necessary adjustments to the **3**-**R** to align with the **2**-**F**.

Initialization:

- If the **3**-**R** is already complete, proceed to the next step.
- Convert the **3**-**R** to a **2**-**F** to ensure compatibility.