Lecture 4: Task Scheduling

- **Schedulable**: a task always meets its timeliness constraints.

- **Deterministically schedulable**: a task can be guaranteed to always meet all deadlines (always schedulable)
 - Worst case response time \leq task’s deadline

- All tasks are schedulable \Rightarrow system is schedulable
L4: Task Scheduling

CPU Utilization:

• Ideally: CPU is close to 100% of time busy. (Why?)
• In practice, that won’t happen.

• For a periodic task i: $u_i = \frac{e_i}{p_i}$

 u_i fraction of time task keeps CPU busy
 e_i execution time
 p_i period
L4: Task Scheduling

When to schedule?

1. A process goes from running to waiting (e.g. I/O request).
2. When a running process must go into ready state (e.g. an interrupt occurs).
3. A waiting process becomes ready (e.g. I/O activity completed).
4. A process ends.

- 1 and 4 do not require preemption. Non-preemptive scheduling: a process keeps CPU until termination or switching to waiting state.
- If 2 and 3 are also used: preemptive scheduling.
L4: Scheduling Criteria

Simple Priority

• The highest priority task among those ready will be selected to run.
• In preemptive systems: lower priority tasks running are preempted by higher priority tasks that may arrive.

i. Priority of Task A > Priority of Task B
 ➞ Task A is running until it requires a resource. If Task B “owns” such resource, ...
 ... it will still run despite the two priorities ➞ Blocking.

ii. Three tasks: A, B, and C (A > B > C)
If A and C require a resource, but B doesn’t, ...
B may end up running more than A or C ➞ Priority Inversion.
L4: Scheduling Criteria

Turnaround Time
Total interval from submission until completion (including switching time, waiting time, etc).

Throughput
of processes that are completed per unit of time. It depends on the complexity of the task.
A high throughput with a long turnaround may lead to unattained time deadlines.

Waiting Time
Tasks spend time on different queues (entry, ready, I/O, device).

Response Time
For interactive systems, what counts is the first response, not the task completion (turnaround).
Next time...

Scheduling Algorithms (read sec. 12.3)

• Asynchronous interrupt event driven
• Polled
• Polled with timing element
• State Based
• Synchronous interrupt event driven
• Combined interrupt event driven
• Foreground-Background
• Time Shared
• Priority schedule