4.5 PID Control

General

![PID Control Diagram](image)

Objective: Determine how the C.L. roots are related to the control gains K_p, K_I, and K_d (use SIMULINK to check some with $G(s) = 1/(s+10)$, and different $D(s)$)

<table>
<thead>
<tr>
<th>Control Type</th>
<th>Time Domain Representation</th>
<th>Frequency domain representation of controller</th>
<th>Characteristic equation (denom. of closed loop TF=0), $1 + D(s)G(s) = 0$</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>$u(t) = K_p e(t)$</td>
<td>$D(s) = K_p$</td>
<td>$s^2 + a_1 s + a_2 + AK_p = 0$</td>
<td>*1 degree of freedom, and so cannot locate the roots at any location. *Can reduce error magnitude but non-zero steady-state error exists. *Can increase the speed of response but has much larger transient overshoot.</td>
</tr>
<tr>
<td>I</td>
<td>$u(t) = K_I \int e(t) dt$</td>
<td>$D(s) = \frac{K_I}{s}$</td>
<td>$s^3 + a_1 s^2 + a_2 s + AK_I = 0$</td>
<td>*Can reduce or eliminate constant steady-state errors at the cost of worse transient response.</td>
</tr>
<tr>
<td>PI</td>
<td>$u(t) = \left[K_p e(t) + K_I \int e(t) dt \right]$</td>
<td>$D(s) = \frac{K_p s + K_I}{s}$</td>
<td>$s^3 + a_1 s^2 + (a_2 + AK_p) s + AK_I = 0$</td>
<td>*2 degrees of freedom and the designer can choose K_p and K_I independently to provide better transient response. *Approximated by lag controller.</td>
</tr>
<tr>
<td>D</td>
<td>$u(t) = K_d \dot{e}(t)$</td>
<td>$D(s) = K_d s$</td>
<td>$s^2 + (a_1 + AK_d) s + a_2 = 0$</td>
<td>*Pure derivative feedback is not practical to implement.</td>
</tr>
<tr>
<td>PD</td>
<td>$u(t) = (K_p e(t) + K_d \dot{e}(t))$</td>
<td>$D(s) = (K_p + K_d s)$</td>
<td>$s^2 + (a_1 + AK_d) s + (a_2 + AK_p) = 0$</td>
<td>*Can increase the damping and generally improve the stability of a system. *Approximated by lead controller.</td>
</tr>
<tr>
<td>PID</td>
<td>$u(t) = \left[K_p e(t) + K_I \int e(t) dt + K_d \dot{e}(t) \right]$</td>
<td>$D(s) = \left(K_p + \frac{K_I}{s} + K_d s \right)$</td>
<td>$s^3 + (a_1 + AK_d) s^2 + (a_2 + AK_p) s + AK_I = 0$</td>
<td>*3 degrees of freedom and can provide an acceptable degree of error reduction simultaneously with acceptable stability and damping.</td>
</tr>
</tbody>
</table>

Other controller types: state feedback, adaptive, robust, stochastic, neural, fuzzy...
Recall: \[Y = TR + GSW - TV \]
\[E = SR - GSW + TV \]
\[(E - R - Y) \]
\[T = \frac{GD}{1+GD} \]
\[S = \frac{1}{1+GD} \]
\[T = 1 - S \]

Open Loop

\[G = \frac{b}{a} \quad D = \frac{c}{a} \quad T = GD = \frac{bc}{ad} \]

If \(G \) is unstable - i.e., roots (poles) of \(G \) in RHP - one might think that the same roots in \(C \) (zeros) could cancel those poles if unstable (sensitivity!)

Similarly, if \(G \) has poor response due to some zeros of \(b \) in RHP, poles of \(a \) to cancel those zeros would, again, lead to an unstable system.

Sensitivity

\[S_{Tol} = \frac{STol}{Tol} = \frac{\delta G}{SG} = 1 \]

10% in \(G \) => 10% in \(T_{ol} \)
Feedback

\[G = \frac{b}{a}, \quad D = \frac{c}{d}, \quad T = \frac{bc}{ad + bc} = \frac{bc}{ad + bc} \]

Now, if \(G \) is unstable - poles of \(a \) in \(\mathbb{R}NP \).

The exact same zeros in \(b \) will not cancel.

The poles = do now to cancel unstable poles?

By adding \underline{stable} zeros ?!

Ex: \[G = \frac{b}{a} = \frac{1}{s^2 - 1} = \frac{1}{(s+1)(s-1)} \]

\[D = \frac{c}{d} = \frac{k(s+1)}{(s+\delta)} \]

\[T = \frac{bc}{ad + bc} = \frac{k(s+1)}{(s+1)(s-1)(s+\delta) + k(s+1)} \]

\[T = \frac{k}{(s-1)(s+\delta) + k} = \frac{k}{s^2 + (\delta-1)s + (k-\delta)} \]

\[\text{Routh criterion} \to \text{choice of } k, \delta \quad (k > \delta > 1) \]
Also,
\[T_{cl} + \delta T_{cl} = \frac{(G + \delta G)D}{1 + (G + \delta G)D} \]
\[\delta T_{cl} \approx \frac{dT_{cl}}{dG} \delta G \]

\[S_{G} \leq \frac{\delta T_{cl}}{T_{cl} \delta G} = \frac{G \delta T_{cl}}{T_{cl} \delta G} \leq \frac{G}{T_{cl}} \frac{dT_{cl}}{dG} = \]

\[S_{G} = \frac{G}{T_{cl}} \frac{d}{dG} \left(\frac{GD}{1 + GD} \right) = \ldots = \frac{1}{1 + GD} \]

If gain of \(1 + GD = 100 \Rightarrow 10\% \text{ in } G \Rightarrow 0.1\% \text{ in } T_{cl} \)

Note: \[S_{G} = S = \frac{1}{1 + GD} \]
System Type (for tracking the input)

\[K \mid \text{For } R(t) = t^k \therefore e_{ss} = \lim_{t \to \infty} e(t) = c^t \quad (\text{for } w = v = 0) \]

\[e_{ss} = \lim_{s \to 0} s \cdot e(s) = c^t \quad \text{if roots } e(t) \in \text{LHP} \]

\[e_{ss} = \lim_{s \to 0} s \cdot R = \lim_{s \to 0} \frac{s}{1 + GD} = \frac{1}{s^{k+1}} \lim_{s \to 0} \frac{1}{1 + GD} \frac{1}{s^k} \]

\[\text{if } D = \frac{c}{a} = \frac{c}{s^n} \Rightarrow n \text{ integrators} \]

\[e_{ss} = \lim_{s \to 0} \frac{1}{1 + GC} \frac{1}{s^k} = \frac{s^n}{s^n + GC} \frac{1}{s^k} \]

If \(GC(0) = Kn = 0 \) System Type = \(n \)

Recall:
\[n = 2 \quad \text{input? step ramp parabolic} \]

\[e_{ss} = 0 \quad 0 \quad 0 \quad c^t \]
System Type (for regulation - disturbance rejection)

\[K \]

For \(W(t) = t^r \):
\[e_{ss} = \lim_{t \to \infty} e(t) = \frac{c t^r}{t^\infty} \]

\[e(s) = R(s) - Y(s) = -Y(s) \Rightarrow \frac{e(s)}{W(s)} = -\frac{Y(s)}{W(s)} = Tw(s) \]

Taking \(\lim_\infty \) or \(\lim_{s \to 0} \)

\[y_{ss} = \lim_{s \to 0} Tw(s) \cdot \frac{1}{s^{k+1}} = \lim_{s \to 0} Tw(s) \cdot \frac{1}{s^k} \]

Ex.

\[D = k_p \quad \text{and} \quad D = k_p + \frac{k_I}{s} \]

Type 0

Type 1

\[y_{ss} = -\frac{b}{A k_p} \]

\[\text{Yss} = -\frac{b}{A k_I} \]
Proportional Control

The control variable $e(t) = K_p e(t)$, where control is proportional to error.

$$\frac{U(s)}{E(s)} = \frac{D_{cl}(s)}{E(s)} = K_p \quad \text{and} \quad \tau(s) = \frac{K_p G(s)}{1 + K_p G(s)}$$

If $G(s) = \frac{b}{a} = \frac{A}{s^2 + a_1 s + a_2}$, then $\tau(s) = \frac{bc}{ad + bc} = \frac{A}{s^2 + a_1 s + a_2 + K_p A}$

System type for tracking is 0:

$$e_{ss} = \frac{1}{a_2 + K_p A}$$

Graph showing system response with $k_p = 6$ and $k_p = 1.5$.
INTEGRAL CONTROL

\[U(t) = K_I \int_{0}^{t} e(t) dt \]
Control is the Accumulated Error

\[\frac{U(s)}{E(s)} = D_{eq}(s) = \frac{K_I}{s} \]
\[T(s) = \frac{K_I G(s)}{1 + K_I G(s)} = \frac{K_I G(s)}{s + K_I G(s)} \]

If \(G(s=0) = 1 \)

\[e_{ss} = \lim_{s \to 0} \frac{s}{s + GK_I} \ast \frac{1}{s^2} \]

System Type for Tracking = 1

\[e_{ss} = 0 \text{ for } R(s) = \frac{1}{s} \text{ (unit step)} \]

\[e_{ss} = \frac{1}{K_I} \text{ for } R(s) = \frac{1}{s^2} \text{ (ramp)} \]

Error (t)

\[e(t) = k_1 \int_{0}^{t} e(\tau) d\tau = k_1 \cdot \text{area} \]

Time (sec)

Area

Copyright ©2015 Pearson Education, All Rights Reserved
\[Y_{ss} = \lim_{s \to 0} s \cdot T_W(s) \cdot \frac{1}{s^{k+1}} = \lim_{s \to 0} s \cdot \frac{G}{1 + DG} \cdot \frac{1}{s^{k+1}} = \lim_{s \to 0} \frac{Gs}{s + KiG} + \frac{1}{s^k} \]

System Type for Regulation = 1

\[Y_{ss} = 0 \quad \text{for} \quad W(s) = \frac{1}{s} \quad (\text{step}) \]

\[Y_{ss} = \frac{1}{Ki} \quad \text{for} \quad W(s) = \frac{1}{s^2} \quad (\text{ramp}) \]

\[U_{ss} = \lim_{s \to 0} s \cdot -DG \cdot \frac{1}{s^{k+1}} = \lim_{s \to 0} s \cdot \frac{-KiG}{s + KiG} \cdot \frac{1}{s^k} \]

\[U_{ss} = -1 \quad \text{for} \quad W(s) = \frac{1}{s} \quad (\text{step}) \]

\[U_{ss} = \infty \quad \text{for} \quad W(s) = \frac{1}{s^2} \quad (\text{ramp}) \]
DERIVATIVE CONTROL

\[U(t) = K_D \dot{e}(t) \quad \text{CONTROL IS THE RATE OF THE ERROR} \]

\[\frac{U(s)}{E(s)} = D_{ci}(s) = K_D s \quad \text{T}(s) = \frac{K_D s G(s)}{1 + K_D s G(s)} = \frac{K_D s G(s)}{1 + K_D s G(s)} \]

\[G(s) = \frac{b}{a} = \frac{A}{s^2 + a_1 s + a_2} \]

\[T(s) = \frac{bc}{ad + bc} = \frac{A K_D s}{s^2 (a_1 + K_D A) s + a_2} \]
\[u(t) = K_p e(t) + K_i \int_0^t e(t) \, dt + K_D \frac{d}{dt} e(t) \]

\[u(s) = \left(K_p + \frac{K_i}{s} + K_D s \right) e(s) \]

\[G(s) = s^2 + a_1 s + a_2 \]