Background: The portmanteau "Mechatronics" (*mecha* for mechanisms, and *tronics* for electronics) was first coined by Mr. Tetsuro Mori, a senior engineer at the Japanese company Yaskawa, in 1969. The term was originally created to designate the field of study of automata (self-operating machines) from an engineering perspective. Today, this interdisciplinary degree involves courses not only in mechanics, electronics, robotics and control engineering, but also in computer engineering, software engineering, communications, digital signal processing and even nanotechnology (MEMS) and biotechnology.

Being such a broad area, many universities around the world offer today either a specific four-year degree or a multi-disciplinary degree in Mechatronics Engineering – the latter is usually obtained by taking classes from departments such as ME, ECE, and CS. Since every mechatronic system requires a mechanism and the sensors/actuators to control such mechanism, in this introductory course, we will focus on three major topics, as explained next.

Course Description: Course focuses on: 1) mechatronic systems and their components; 2) the mathematical tools used to model industrial and mobile robots; and 3) vision sensors, their underlying models and the algorithms that allow us to control and interact with robots
Figure 1.1: The field of mechatronics: Intersection of mechanical, electrical, and computer science.
Figure 1.2: Manual and automatic control system analogy: (a) Human controlled and (b) computer controlled.
Figure 1.3: Main components of any mechatronic system: mechanical structure, sensors, actuators, decision-making components (controller, microcontroller), power source, and human interfaces.

Simplified diagram of components.
Figure 1.1: Mechatronic system components.

ARCHITECTURES
- PLC
- SCADA
- Microcontrollers
- Logic circuits
- Sequencing and timing

DIGITAL CONTROL
- Power supplies
- Power transistors
- A/D and D/A

AND INTERFACING
- Amplifiers
- Display devices

OUTPUT SIGNAL
- Graphical displays
- LCD
- LED

SENSORS
- MEMS
- Accelerometers
- Encoders
- Thermocouples
- Strain gages

ACTUATORS
- Pneumatics
- Hydraulic
- Servo motors
- Stepper motors
- DC motors
- Voice coils

MECHANICAL SYSTEM
- Dynamic response
- System model

Complete "St. Ignatius Cs"
3D Models from Structured-Light Scanners

3D Modelling
Sensors = Cameras

Visual Servoing