\[p \text{ Poly's} = 3 \times (p+1) \text{ cee.} \]

1 Poly's = 3 cee.

2 Poly's = 6 cee.

3 Poly's = 9 cee.

\[\text{LAST TIME} \]

LECTURE 28
Equilibrium Extraneous
and motion can occur

Therefore, $	heta = \frac{\pi}{2}$

Max = ?

Exit points found to find

However, one case poly not be

Be satisfied with

These constraints can

Initial position:

1. Position (given, normally zero)
2. Velocity (given, normally zero)
3. Acceleration (given, normally zero)

Immediate positions:

1. Position (continues with previous trajectory segment)
2. Velocity (continues with previous trajectory segment)
3. Acceleration (continues with previous trajectory segment)
4. Lift-off position (given)
5. Lift-off position (continues with previous trajectory segment)
6. Velocity (continues with previous trajectory segment)
7. Acceleration (continues with previous trajectory segment)
8. Sea-down position (given)
9. Sea-down position (continues with previous trajectory segment)
10. Velocity (continues with previous trajectory segment)
11. Acceleration (continues with next trajectory segment)

Final position:

1. Position (given, normally zero)
2. Velocity (given, normally zero)
2

\[2 \rightarrow 1 \rightarrow 0 \]

\[2 \rightarrow 1 \rightarrow 0 \]

\[2 - \frac{1}{2} = \frac{3}{2} \]

\[7 - \frac{1}{2} = \frac{13}{2} \]

\[1, 2, 3, 4, 5, 6, 7 \]

\[0, 1, 2, 3, 4, 5, 6, 7 \]

\[\theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta \]

\[\text{Replace the 3\text{-}th case by} \]

\[4 - 3 = 1 \]
Figure 4.3 Boundary conditions for a 4-3-4 Joint Reactor.
\[\begin{align*}
\frac{1}{\sqrt{2}} & = 12a_1 f + 6\alpha f + 2 a_2 \\
\frac{1}{\sqrt{2}} & = 4a_1 f + 3\alpha f + 2 a_2 \\
& \quad + a_1 f + a_2 f + a_3 f + a_4 f + a_5 f
\end{align*} \]

\text{LAST SEGMENT}

\[\begin{align*}
\frac{1}{\sqrt{2}} \cdot \frac{2\rho}{(2 - \cdot^2)^2} & = \frac{2\rho}{(2 - \cdot^2)^2} \\
\frac{1}{\sqrt{2}} & = \frac{2\rho}{(2 - \cdot^2)^2}
\end{align*} \]

\text{FIRST SEGMENT}

\[\begin{align*}
\frac{1}{\sqrt{2}} \cdot \frac{2\rho}{(2 - \cdot^2)^2} & = \frac{2\rho}{(2 - \cdot^2)^2} \\
\frac{1}{\sqrt{2}} & = \frac{2\rho}{(2 - \cdot^2)^2}
\end{align*} \]
\[
\bar{\mathbf{A}} \cdot \frac{\mathbf{a} \cdot \mathbf{a}}{2} + \mathbf{a} \cdot \mathbf{a} + \frac{\mathbf{a} \cdot \mathbf{a}}{2}
\]

\[
\bar{\mathbf{A}} \cdot \frac{\mathbf{a} \cdot \mathbf{a}}{2} + \mathbf{a} \cdot \mathbf{a} + \frac{\mathbf{a} \cdot \mathbf{a}}{2}
\]

\[
\bar{\mathbf{A}} \cdot \frac{\mathbf{a} \cdot \mathbf{a}}{2} + \mathbf{a} \cdot \mathbf{a} + \frac{\mathbf{a} \cdot \mathbf{a}}{2}
\]

\[
\bar{\mathbf{A}} \cdot \frac{\mathbf{a} \cdot \mathbf{a}}{2} + \mathbf{a} \cdot \mathbf{a} + \frac{\mathbf{a} \cdot \mathbf{a}}{2}
\]

\[
\bar{\mathbf{A}} \cdot \frac{\mathbf{a} \cdot \mathbf{a}}{2} + \mathbf{a} \cdot \mathbf{a} + \frac{\mathbf{a} \cdot \mathbf{a}}{2}
\]
\[0 = \begin{cases} \frac{t}{2} \sum_{i=1}^{n} a_i + \frac{t}{2} \sum_{i=1}^{n} b_i + \frac{t}{2} \sum_{i=1}^{n} c_i + \frac{t}{2} \sum_{i=1}^{n} d_i \\ \frac{t}{2} \sum_{i=1}^{n} e_i + \frac{t}{2} \sum_{i=1}^{n} f_i + \frac{t}{2} \sum_{i=1}^{n} g_i + \frac{t}{2} \sum_{i=1}^{n} h_i \\ \frac{t}{2} \sum_{i=1}^{n} i_i + \frac{t}{2} \sum_{i=1}^{n} j_i + \frac{t}{2} \sum_{i=1}^{n} k_i + \frac{t}{2} \sum_{i=1}^{n} l_i \\ \frac{t}{2} \sum_{i=1}^{n} m_i + \frac{t}{2} \sum_{i=1}^{n} n_i + \frac{t}{2} \sum_{i=1}^{n} o_i + \frac{t}{2} \sum_{i=1}^{n} p_i \\ \frac{t}{2} \sum_{i=1}^{n} q_i + \frac{t}{2} \sum_{i=1}^{n} r_i + \frac{t}{2} \sum_{i=1}^{n} s_i + \frac{t}{2} \sum_{i=1}^{n} t_i \\ \frac{t}{2} \sum_{i=1}^{n} u_i + \frac{t}{2} \sum_{i=1}^{n} v_i + \frac{t}{2} \sum_{i=1}^{n} w_i + \frac{t}{2} \sum_{i=1}^{n} x_i \\ \frac{t}{2} \sum_{i=1}^{n} y_i + \frac{t}{2} \sum_{i=1}^{n} z_i + \frac{t}{2} \sum_{i=1}^{n} 0_i + \frac{t}{2} \sum_{i=1}^{n} 1_i \\ \frac{t}{2} \sum_{i=1}^{n} 2_i + \frac{t}{2} \sum_{i=1}^{n} 3_i + \frac{t}{2} \sum_{i=1}^{n} 4_i + \frac{t}{2} \sum_{i=1}^{n} 5_i \\ \frac{t}{2} \sum_{i=1}^{n} 6_i + \frac{t}{2} \sum_{i=1}^{n} 7_i + \frac{t}{2} \sum_{i=1}^{n} 8_i + \frac{t}{2} \sum_{i=1}^{n} 9_i \\ \frac{t}{2} \sum_{i=1}^{n} 10_i + \frac{t}{2} \sum_{i=1}^{n} 11_i + \frac{t}{2} \sum_{i=1}^{n} 12_i + \frac{t}{2} \sum_{i=1}^{n} 13_i \\ \frac{t}{2} \sum_{i=1}^{n} 14_i + \frac{t}{2} \sum_{i=1}^{n} 15_i + \frac{t}{2} \sum_{i=1}^{n} 16_i + \frac{t}{2} \sum_{i=1}^{n} 17_i \\ \frac{t}{2} \sum_{i=1}^{n} 18_i + \frac{t}{2} \sum_{i=1}^{n} 19_i + \frac{t}{2} \sum_{i=1}^{n} 20_i + \frac{t}{2} \sum_{i=1}^{n} 21_i \\ \frac{t}{2} \sum_{i=1}^{n} 22_i + \frac{t}{2} \sum_{i=1}^{n} 23_i + \frac{t}{2} \sum_{i=1}^{n} 24_i + \frac{t}{2} \sum_{i=1}^{n} 25_i \\ \frac{t}{2} \sum_{i=1}^{n} 26_i + \frac{t}{2} \sum_{i=1}^{n} 27_i + \frac{t}{2} \sum_{i=1}^{n} 28_i + \frac{t}{2} \sum_{i=1}^{n} 29_i \\ \frac{t}{2} \sum_{i=1}^{n} 30_i + \frac{t}{2} \sum_{i=1}^{n} 31_i + \frac{t}{2} \sum_{i=1}^{n} 32_i + \frac{t}{2} \sum_{i=1}^{n} 33_i \\ \frac{t}{2} \sum_{i=1}^{n} 34_i + \frac{t}{2} \sum_{i=1}^{n} 35_i + \frac{t}{2} \sum_{i=1}^{n} 36_i + \frac{t}{2} \sum_{i=1}^{n} 37_i \\ \frac{t}{2} \sum_{i=1}^{n} 38_i + \frac{t}{2} \sum_{i=1}^{n} 39_i + \frac{t}{2} \sum_{i=1}^{n} 40_i + \frac{t}{2} \sum_{i=1}^{n} 41_i \\ \frac{t}{2} \sum_{i=1}^{n} 42_i + \frac{t}{2} \sum_{i=1}^{n} 43_i + \frac{t}{2} \sum_{i=1}^{n} 44_i + \frac{t}{2} \sum_{i=1}^{n} 45_i \\ \frac{t}{2} \sum_{i=1}^{n} 46_i + \frac{t}{2} \sum_{i=1}^{n} 47_i + \frac{t}{2} \sum_{i=1}^{n} 48_i + \frac{t}{2} \sum_{i=1}^{n} 49_i \\ \frac{t}{2} \sum_{i=1}^{n} 50_i + \frac{t}{2} \sum_{i=1}^{n} 51_i + \frac{t}{2} \sum_{i=1}^{n} 52_i + \frac{t}{2} \sum_{i=1}^{n} 53_i \\ \frac{t}{2} \sum_{i=1}^{n} 54_i + \frac{t}{2} \sum_{i=1}^{n} 55_i + \frac{t}{2} \sum_{i=1}^{n} 56_i + \frac{t}{2} \sum_{i=1}^{n} 57_i \\ \frac{t}{2} \sum_{i=1}^{n} 58_i + \frac{t}{2} \sum_{i=1}^{n} 59_i + \frac{t}{2} \sum_{i=1}^{n} 60_i + \frac{t}{2} \sum_{i=1}^{n} 61_i \\ \frac{t}{2} \sum_{i=1}^{n} 62_i + \frac{t}{2} \sum_{i=1}^{n} 63_i + \frac{t}{2} \sum_{i=1}^{n} 64_i + \frac{t}{2} \sum_{i=1}^{n} 65_i \\ \frac{t}{2} \sum_{i=1}^{n} 66_i + \frac{t}{2} \sum_{i=1}^{n} 67_i + \frac{t}{2} \sum_{i=1}^{n} 68_i + \frac{t}{2} \sum_{i=1}^{n} 69_i \\ \frac{t}{2} \sum_{i=1}^{n} 70_i + \frac{t}{2} \sum_{i=1}^{n} 71_i + \frac{t}{2} \sum_{i=1}^{n} 72_i + \frac{t}{2} \sum_{i=1}^{n} 73_i \\ \frac{t}{2} \sum_{i=1}^{n} 74_i + \frac{t}{2} \sum_{i=1}^{n} 75_i + \frac{t}{2} \sum_{i=1}^{n} 76_i + \frac{t}{2} \sum_{i=1}^{n} 77_i \\ \frac{t}{2} \sum_{i=1}^{n} 78_i + \frac{t}{2} \sum_{i=1}^{n} 79_i + \frac{t}{2} \sum_{i=1}^{n} 80_i + \frac{t}{2} \sum_{i=1}^{n} 81_i \\ \frac{t}{2} \sum_{i=1}^{n} 82_i + \frac{t}{2} \sum_{i=1}^{n} 83_i + \frac{t}{2} \sum_{i=1}^{n} 84_i + \frac{t}{2} \sum_{i=1}^{n} 85_i \\ \frac{t}{2} \sum_{i=1}^{n} 86_i + \frac{t}{2} \sum_{i=1}^{n} 87}_
\[a_{30} = \Theta (1) \Theta = \Theta (0) \Theta \]

\[(1) \Theta = (0) \Theta \]

\[\Theta (t) = 12 a t + 6 a a t + t + 2 a \]

\[\Theta (t) = 4 a t + 3 a a t + 2 a t + 15 \]

\[\Theta (t) = 3 a t + 3 a a t + 5 a t + 15 \]

\[\Theta (t) = 2 a t + 3 a a t + 5 a t + 30 \]

\[\Theta (t) = 0 \quad (t < 0) \]

\[\text{Hi, I did not see your comment.} \]
\[\frac{\partial^2 Q_f}{\partial \omega^2} \text{ (at } f = 1) \]

\[Q_f = \frac{\partial^2 Q}{\partial \omega^2} \text{ (at } f = 1) \]

\[0 = \frac{\partial^2 Q}{\partial \omega^2} = \frac{2 \partial^2 Q}{\partial f^2} + \frac{2 \partial^2 Q}{\partial \omega^2} + \frac{\partial^2 Q}{\partial \omega^2} \]

\[\begin{align*}
1 & = f \\
\frac{\partial^2 Q}{\partial \omega^2} & = 0 \\
\frac{\partial^2 Q}{\partial \omega^2} & = 0 \\
\end{align*} \]
\[\cos \Theta = A \cdot 0.2n \]

\[0 = 1 \]

\[\begin{bmatrix}
 a_{10} & \cdots & a_{21} & a_{30} \\
 a_{11} & \cdots & a_{22} & a_{31} \\
 \vdots & \ddots & \ddots & \vdots \\
 a_{1n} & \cdots & a_{2n} & a_{3n}
\end{bmatrix} = 0 \]