
 1

Abstract—The joint configuration of any robot can be

described by the Denavit-Hartenberg parameters. These

parameters are enough to obtain a working visualization of the

robot described. Presented is a MATLAB program which

models any robot given a set of corresponding DH parameters.

This simulation allows the user to visualize the joints and

movements of the modeled robot.

Index Terms—Robot Simulator, DH representation, MATLAB

I. INTRODUCTION

HE Denavit-Hartenberg representation of forward

kinematic equations of robots has become the standard

technique for modeling robots and their motions. The

technique summarizes the relationship between two joints in

concise set of four parameters. Any robot can be modeled

using the DH representation.

A computer code has been created in MATLAB to

implement the modeling of any robot with only the DH

parameters as input. The purpose of the simulator is to create

an accurate visual representation of any type of robot and its

motions. The simulator also allows for the independent

manipulation of each joint of the modeled robot.

Presented in this study are the details of this simulator as

well as background on the DH representation and some

analysis on how effectively the simulator models some

example robots.

II. BACKGROUND

In 1955, Denavit and Hartenberg published a paper [1]

explaining a kinematic notation that was eventually adapted as

a method to represent robots. The method defines robots as a

sequence of joints, each with a degree of freedom. Each joint

has its own reference frame complete with a z and x axis, the

intersection of which defines the joint’s origin. Each joint is

defined as either prismatic, when the motion is a linear

translation along the joint’s z axis, or revolute, when the

motion is a rotation about the joint’s z axis. Each joint is

defined iteratively in terms of the transformation necessary

from the previous joint. The first joint is defined as a

transformation from a reference origin and axis. This

technique is detailed in Figure 1 and Figure 2.

The transformation from joint n and joint n+1 has four steps

as follows. First, rotate an angle of θn+1 about the zn axis.

This aligns xn with xn+1. Second, translate along the zn axis a

A. Lodes is with the Department of Computer and Electrical Engineering,

University of Missouri-Columbia, Columbia, MO 65211 USA (e-mail:

alvb4@mail.missouri.edu).

distance dn+1 to make the xn and xn+1 axis collinear. Third,

translate along the xn axis a distance αn+1. This makes the two

origins in the same location. Finally, rotate the zn axis about

the xn+1 axis an angle of αn+1. This process aligns both the

origins and reference frames of joint n and joint n+1 and is

depicted in Figure 2.

Fig. 1. Denavit-Hartenberg represenation [2].

Fig 2. Transformation from joint n and joint n+1 in DH

representation [2].

The transformation between reference frame i - 1 and

reference frame i can be easily calculated by following these

above steps and is shown in Equation 1.

(1)

Robot Simulator in MATLAB

Lodes, A.

T

 2

 Following this technique iteratively, each joint can be

described by the previous until all of the joints of the robot

have been described. The resultant parameters θ, d, a, α are

the critical parameters to define one joint in terms of the

previous. The values of these parameters for each joint are

often represented in a table known as a DH table. Every robot

can be described by its DH table. For a more exhaustive

review of the Denavit-Hartenberg Representation see

references [1], [2].

This simulator uses the DH parameters in the table to model

the robot and its motions. This is described in detail in the

following sections.

III. APPROACH AND IMPLEMENTATION

The aim of the simulation was to model any robot with only

the DH parameters. Careful consideration was given to the

modeling of the robot links. The DH parameters of a robot do

not specify exact link dimensions, base or end dimensions, or

joint limitations. Without extra information given, some

assumptions had to be made regarding the link shape and size,

default base and end affecter shapes were chosen, and values

were assigned to joint limitations. These assumptions have

considerable impact on the final visualization of a robot and

its movements and will be described in thorough detail below.

 Other considerations were given to the workings of the

simulator program itself. The graphical user interface(GUI)

was carefully designed to allow a number of options for

loading DH parameters. The figure displaying the robot as

well as the GUI controls for animating the robot were chosen

to be both aesthetically pleasing and functional. These

program design decisions are detailed in this section. Also

presented are some practical decisions regarding the

implementation in MATLAB of the animation of the robot

joints.

A. Link Visualization

 As described in Section II, the DH parameters specify the

relationship between the origins of each joint. The physical

link between each origin pair is not described in the DH

parameters.

There is only one constraint on each link; the link must be

physically continuous between the two joints it connects. A

link could be straight, curved, or angled to achieve this

constraint. Given no other information, it is best for

simulation to try and visualize links in a way that accurately

reflects joint motion.

 An easy assumption would be to draw a line between the

two origins. This is a simple interpretation, but in practice is

too often misrepresentative of the actual physical robot being

modeled. This assumption can lead to some difficulties in

visualizing the movement of the robot modeled.

The end-user often focuses on the moving links, and not

what those link movements represent in terms of joint

movements. This is not desirable, as in fact it does detract

from properly visualizing the robot for the end user.

It is because of this undesirable consequence that this

simulation has chosen to make a different assumption about

link structure. Each link in this simulator is modeled as a

simple shape along the z axis of the origin which is has

dimensions related to the d and a parameters from the DH

parameters for that joint transformation. By definition, the

n+1 origin is by distance d along the z axis and distance a

along the x axis away from the n origin. The approach taken

for this simulator is to make the link d in length along the z

axis from the origin and 2*a or a wide along the x axis,

centered at the n origin (depending on if the joint is revolute or

prismatic). This approach visualizes each link along its full

range of motion as can be seen in Section IV, Robot

Simulations and Results.

For prismatic joint n, a rectangular box is used in this

simulator as the link between joints n and n+1. This box is d

in height along the z axis from the origin and is a wide and a

long centered at the origin.

For revolute joint n, a cylinder is used in this simulator as

the link between joints n and n+1. This cylinder is d in height

along the z axis from the origin and has a radius of a from the

origin.

In order to visualize joint animation, each link has a

minimum height and width. Only the link is drawn with these

dimensions, the DH table for the robot is not affected. The

default minimum height and width value of the simulator is

10, and can be changed within the source code as necessary.

 Additionally each joint is colored in order of appearance,

red, blue, yellow, orange, purple, gold, army green, cyan,

magenta, grey. After the tenth joint, the colors repeat

beginning again at red.

Also of note is the difficulty in scaling the link sizes to

show all of the joints within proportion for any robot. This

program sidesteps this limitation by allowing the user to zoom

in, zoom out, and rotate the figure through the menu bar on the

top of the GUI.

B. Joint Limitations

The limits of each joint type were arbitrarily chosen.

Revolute joints have limits of -180º to 180º. Prismatic joints

have a maximum value of 150 which can be modified within

the source code as necessary. Some error checking is done

within the program to ensure the user cannot enter a Theta or

alpha angle in the DH parameter beyond the joint limits. No

error checking is done for the DH parameters of the prismatic

joint d value, however this could be added easily if necessary.

Joint limits are checked when controlling the robot

animations. The slider bars are only able to slide within the

joint limits, and the edit fields check the joint limits before

executing code. This is to minimize the number of errors

generated by the program if an improper input is given.

No consideration is given to the individual links or joints

overlapping or interfering with each other. The model allows

for the robot joints to act independently. This allows for

movements in the model that would not be possible when for a

physical robot. This effect is intentional, as it does allow the

user to visualize when overlapping is possible. Because of the

link visualization implementation described above, the model

 3

may show two links overlapping in situations where the

physical robot’s links may not overlap. Without additional

link information or joint limitations, this is unavoidable.

C. Base and End Affecter

The shapes of the base and end affecter were chosen to help

with aesthetics and the visualization of robot movements. The

base is a cylinder tall enough to go from the minimum z

coordinate of the world, to the world reference point. The

base cylinder is of the default link radius. The end affecter is

a small gripper like tool, and was added to better visualize the

movement of the last joint.

 Neither the base nor the end affecter is end-user editable.

However minor changes in the source code are all that is

necessary to change their size or appearance.

D. GUI Implementation

The simulator program opens with a welcome message and

several buttons to choose how to load a DH table. Figure 3

shows this GUI. The five buttons on the right each load a

different pre-made robot. The values for the DH tables of

these robots have been saved in .mat files generated by the .m

files. To change these premade values, the source code for the

.m files can be modified and run to reflect the new desired DH

parameters.

Fig. 3. Welcome GUI of the MATLAB program.

The buttons on the left allow the user to work with a custom

robot. Load a Robot DH Table loads a premade DH table

named Robot.mat. This input file has certain constraints and

needs to follow the structure of the previously made example

robot .m files.

Enter a DH Table allows the user to enter a DH Table with

the GUI shown in Figure 4. First the program asks the user

the number of joints the robot will have in another GUI,

Figure 5. The size of the table in the GUI in Figure 4 is

adjusted to reflect the number of joints entered by the user.

The table itself has five columns. The first column is a drop

box to have the user choose whether the joint is either

prismatic or revolute. The other four columns are the DH

parameters themselves. This table was implemented using the

MATLAB function uitable. When finished entering a table,

the user must click the Continue button to move on to the

robot model. This user entered DH table is saved in the file

Robot.mat so the user may load it again when restarting the

program.

Fig. 4. GUI which determines the number of joints of a user

loaded robot.

Fig. 5. GUI which allows the user to input the parameters of the

DH table.

After creating or loading the DH parameters of a robot, the

program opens up two windows. One is a non editable table

of the DH parameters of the robot modeled. The second

window, an example of which is seen in Figure 6, is the 3D

model of the robot along with a GUI for controlling the

animation of the joints of the robot. The slider controls and

edit fields allow for the user to manipulate the joints of the

robot. This controls initiate animation to the desired new

position.

Figure 6 The robot model GUI with kinematic controls

 4

The Home button returns the robot to its original position

described by the original DH table. The Random Move button

creates a random motion in each of the joints of the robots.

The New Robot button sends the user back to the welcome

screen shown in Figure 3 to choose a new Robot to model. A

zoomed in picture of the kinematic panel of this GUI is shown

in Figure 7.

Fig. 7. Example kinematics control panel with buttons.

E. Animation

Animation of the robot is implemented by creating a linear

10 step progression between the current position and the

desired new position. The robot is redrawn entirely for each

new position, deleting the previously drawn robot. The

number of steps as well as the delay between steps (0.5 sec)

can be changed as necessary in the source code.

IV. ROBOT SIMULATIONS AND RESULTS

The robot simulator has been tested with five different robot

configurations. The five robots consist of the widely known

SCARA Robot, the Puma 560, the Puma 260, one other robot

used in reference [2] known here as Example R , and the robot

used to originally construct the simulator, known as Tester

Robot.

Each robot model has been put through the full functionality

of the program. Ultimately the simulator program is only as

good as how effective it is at visualizing robots, so with that

guideline each robot will be compared to its model. The

reader is referred to the program itself as well as its source

code to better familiarize himself with the accuracy of the

models.

A. Tester Robot

The Tester Robot was created alongside writing the source

code of this program. It was intentionally made simple for the

author to visualize the robot and its motions. This robot was

created before animation was implemented, so at the time,

manually changing the DH table was the only way to ensure

correct operation of the joints. Because the Tester Robot was

designed in this fashion it can only be compared to the ideal

which the DH table defines. The DH table for this robot is

shown in Table 1, and the model for this robot is shown in

Figure 8.

Table 1. DH Table for Tester Robot.

 The green shape on the bottom is the base, the green shape

on the top is the end affecter, as described in Section III. The

other three shapes are the link of the robot described by the

above table. Upon inspection, the sizes of all the joints seem

modeled correctly when taking into account the minimum

joint dimensions. Here, with all zero a parameters, each link

is drawn with its minimum default value.

Fig. 8. Program model of Tester Robot

Movement of the joints of this robot, as in all of the robots

model is easy to visualize when observing the effect of the

motion on the later links. Here the rotation of link 1, shown

red, between joint 1 and joint 2 changes the orientation of all

of the other links. Such a rotation shows the blue and yellow

links rotating about the axis of the red link. This is best

observed when interacting with the simulator and animating

the robot with the kinematics controls.

With this simple example, testing shows each joint to move

properly. A particular observation to point out is the third

joint, shown yellow, is a prismatic joint. When the d

parameter of this joint is modified, this link is shown to

extend/retract.

-150

-100

-50

0

50

100

150

-150

-100

-50

0

50

100

150

-100

-50

0

50

100

150

X

Y

Z

-150

-100

-50

0

50

100

150

-150

-100

-50

0

50

100

150

-100

-50

0

50

100

150

X

Y

Z

 5

B. SCARA Robot

The SCARA Robot is an excellent robot for testing purposes

as it is simple yet widely known. The DH parameters for the

SCARA Robot are shown in Table 2. A representation of the

SCARA Robot is shown in Figure 9 from reference [2]. From

this clear definition, it should be possible to understand the

accuracy of the program’s model of the SCARA Robot, shown

in Figure 10.

Table 2. DH Table for the SCARA Robot

Fig. 9. The SCARA Robot [2].

Figure 10. Program model of the SCARA Robot.

The comparison of Figure 9 and Figure 10 shows precisely

the oddities of our assumptions for link visualization. The

first link connecting joint 1 and joint 2, shown in red, is a

revolute joint. It does not appear similar to the picture of the

actual robot. The actual robot has something closer to just a

rectangular box connecting joint 1 and joint 2. This box is

aligned with the x axis of joint 2 or in DH terms is rotated θ1

about the z axis of the base. The model of the robot occupies

the entire range of motion of this actual robot’s link.

A rotation in joint 1 is represented by moving the

subsequent links along the circumference of the red circle.

Similarly, a rotation in joint 2 is represented by moving the

subsequent links along the blue circle. The prismatic joint,

due to the assumptions in joint limitations is allowed to travel

in the negative z direction, allowing for the link to be above

the blue and red circles. With this type of transformation, the

tool is still pointed down, as would be expected as the

prismatic joint is not revolving or reflecting in any way, it is

merely translating along an axis.

C. Puma 560

The Puma 560 is another good robot to model. The DH

parameters for the Puma 560 are shown in Table 3. A

representation of the Puma 560 is shown in Figure 11 from

reference [2] and the program’s model of the robot is shown in

Figure 12.

Table 3. DH Table for the Puma 560.

Fig. 11. The Puma 560 [2].

 Comparing Figure 11 and Figure 12, the appearance of the

robot again looks different. The first and second links are

visualized a bit differently than in Figure 11.

-150

-100

-50

0

50

100

150

-150

-100

-50

0

50

100

150

-100

-50

0

50

100

150

X

Y

Z

 6

 Rotation in joint 1 causes the blue link and each subsequent

link to rotate about the z axis. This is very easy to visualize in

the model, but is more difficult in the drawing of the Puma

560 in Figure 11. The drawing’s links do not seem to suggest

a possible rotation about the base. On closer inspection of the

figure however, the θ1 is shown to convey this information. In

the model, the red link suggests such a movement

immediately.

Fig. 12. Program model of the Puma 560.

 An additional advantage to this particular robot’s model is

the yellow and pink revolute joints. For the drawing in Figure

11, these joints have to be described with the added axis and

angle labels. In the model, these joints are shown as

minimally sized links, yielding immediate information on their

motion capabilities.

D. Puma 260

The DH parameters for the Puma 260 are shown in Table 4.

An actual picture of the Puma 260 is shown in Figure 13 and

the program’s model of the robot is shown in Figure 14. The

model is difficult to visualize in the default view, so Figure 14

shows the model rotated and zoomed in, a feature of the

simulator program describe in Section III.

Table 4. DH Table for the Puma 260.

Comparing the two images, the 2
nd

 link seems particularly

different in appearance. This again is an artifact of the

assumptions made about visualizing the links without link

information. However, the link gives immediate information

about the motion of its joint. Rotation about z axis of the blue

joint will be reflected in the yellow and subsequent joints

moving along the circumference of the blue cylinder.

Fig. 13. The Puma 260.

Fig. 14. Program model of the Puma 560. The model has been

rotated and zoomed in for this image.

E. The Example R

The Example R Robot is shown in Figure 15 from reference

[2]. The DH parameters for Example R are shown in Table 5

and the program model of the robot is shown in Figure 16.

Table 5. DH Table for the Example R Robot

-150

-100

-50

0

50

100

150

-150

-100

-50

0

50

100

150

-100

-50

0

50

100

150

X

Y

Z

-150
-100-50050100150

-150

-100

-50

0

50

100

150

-100

-50

0

50

100

150

XY

Z

 7

Fig. 15. The Example R Robot [2].

Fig. 16. Program model of the Example R Robot.

The Example R model seems to accurately reflect the

appearance of the robot and depicts information about the

movements of the joints. It is a good example of how links of

prismatic joints are drawn.

V. CONCLUSION

The robot simulator program developed allows for the

modeling of any robot given a set of DH parameters. Given

the assumptions made in visualization of the links, the

program was shown to adequately model several example

robots. While the simulator may not always accurately

visualize each link properly, the models tend to represent the

links in ways that help the user understand the dynamic

motion of the robot.

This program would be an excellent teaching device for the

study of robots. The source code could be adapted easily to

more accurately model any specific robot for advanced study.

Future recommendations for improvement of the simulator

program include more robust error handling, the stability to

handle multiple button presses when animating, and user

definable range of motion limits to each joint. Also, the

option of including more link information possibly in the form

of a CAD file could be implemented for more accurate

visualization. Additional work could be done to make the

simulator backward compatible with previous versions of

MATLAB. The program was written with MATLAB version

7.8.0.347 (R2009a), 64-bit edition. Some uicontrol functions

used are not supported by older versions of MATLAB and can

cause the program to have errors or not run.

ACKNOWLEDGMENT

A Lodes would like to thank Dr. G. Desouza and Y. Dong

for their teaching efforts in the Introduction to Mechatronics

and Robotic Vision class at the University of Missouri-

Columbia. A Lodes would also like to thank Walla Walla

Washington for the very informative 3D MATLAB Kinematic

Model of the Puma 762.

REFERENCES

[1] Denavit, J., R. S. Hartenberg, “A Kinematic Notation for Lower-Pair

Mechanisms Based on Matrices,” ASME Journal of Applied Mechanics,
June 1955, 215-221.

[2] S. B. Niku, Introduction to Robotics Analysis, Systems, Applications,

Upper Saddle River, NJ: Prentice Hall, 2001, pp 67-71, 92-94.

Adam Lodes (S’2006) received dual B.S. degrees in
electrical engineering as well as a BS in mathematics at

the University of Missouri-Columbia in 2007 where he is

currently working toward a Ph.D. degree in electrical
engineering.

 He is currently a Graduate Research Assistant for the

Center for Physical and Power Electronics at the
University of Missouri-Columbia. His research interests

include air plasma sources, spectroscopy, plasma

diagnostics, and pulse power systems.

-150

-100

-50

0

50

100

150

-150

-100

-50

0

50

100

150

-100

-50

0

50

100

150

X

Y

Z

