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Abstract—The joint configuration of any robot can be 

described by the Denavit-Hartenberg parameters.  These 

parameters are enough to obtain a working visualization of the 

robot described.  Presented is a MATLAB program which 

models any robot given a set of corresponding DH parameters.  

This simulation allows the user to visualize the joints and 

movements of the modeled robot.   

Index Terms—Robot Simulator, DH representation, MATLAB 

I. INTRODUCTION 

HE Denavit-Hartenberg representation of forward 

kinematic equations of robots has become the standard 

technique for modeling robots and their motions.  The 

technique summarizes the relationship between two joints in 

concise set of four parameters.  Any robot can be modeled 

using the DH representation.   

A computer code has been created in MATLAB to 

implement the modeling of any robot with only the DH 

parameters as input.  The purpose of the simulator is to create 

an accurate visual representation of any type of robot and its 

motions.  The simulator also allows for the independent 

manipulation of each joint of the modeled robot.   

Presented in this study are the details of this simulator as 

well as background on the DH representation and some 

analysis on how effectively the simulator models some 

example robots.  

II. BACKGROUND 

In 1955, Denavit and Hartenberg published a paper [1] 

explaining a kinematic notation that was eventually adapted as 

a method to represent robots.  The method defines robots as a 

sequence of joints, each with a degree of freedom.  Each joint 

has its own reference frame complete with a z and x axis, the 

intersection of which defines the joint’s origin. Each joint is 

defined as either prismatic, when the motion is a linear 

translation along the joint’s z axis, or revolute, when the 

motion is a rotation about the joint’s z axis.  Each joint is 

defined iteratively in terms of the transformation necessary 

from the previous joint.  The first joint is defined as a 

transformation from a reference origin and axis.  This 

technique is detailed in Figure 1 and Figure 2.   

The transformation from joint n and joint n+1 has four steps 

as follows.  First, rotate an angle of θn+1 about the zn axis.  

This aligns xn with xn+1. Second, translate along the zn axis a 
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distance dn+1 to make the xn and xn+1 axis collinear.  Third, 

translate along the xn axis a distance αn+1.  This makes the two 

origins in the same location.  Finally, rotate the zn axis about 

the xn+1 axis an angle of αn+1.  This process aligns both the 

origins and reference frames of joint n and joint n+1 and is 

depicted in Figure 2.   

 
Fig. 1. Denavit-Hartenberg represenation [2]. 

 

 
Fig 2. Transformation from joint n and joint n+1 in DH 

representation [2]. 

The transformation between reference frame i - 1 and 

reference frame i can be easily calculated by following these 

above steps and is shown in Equation 1.     
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 Following this technique iteratively, each joint can be 

described by the previous until all of the joints of the robot 

have been described.  The resultant parameters θ, d, a, α are 

the critical parameters to define one joint in terms of the 

previous.  The values of these parameters for each joint are 

often represented in a table known as a DH table.  Every robot 

can be described by its DH table.  For a more exhaustive 

review of the Denavit-Hartenberg Representation see 

references [1], [2].   

This simulator uses the DH parameters in the table to model 

the robot and its motions.  This is described in detail in the 

following sections.   

III. APPROACH AND IMPLEMENTATION 

The aim of the simulation was to model any robot with only 

the DH parameters. Careful consideration was given to the 

modeling of the robot links.  The DH parameters of a robot do 

not specify exact link dimensions, base or end dimensions, or 

joint limitations.  Without extra information given, some 

assumptions had to be made regarding the link shape and size, 

default base and end affecter shapes were chosen, and values 

were assigned to joint limitations. These assumptions have 

considerable impact on the final visualization of a robot and 

its movements and will be described in thorough detail below.  

 Other considerations were given to the workings of the 

simulator program itself.  The graphical user interface(GUI) 

was carefully designed to allow a number of options for 

loading DH parameters.  The figure displaying the robot as 

well as the GUI controls for animating the robot were chosen 

to be both aesthetically pleasing and functional.  These 

program design decisions are detailed in this section.  Also 

presented are some practical decisions regarding the 

implementation in MATLAB of the animation of the robot 

joints.   

 

A. Link Visualization 

 As described in Section II, the DH parameters specify the 

relationship between the origins of each joint.  The physical 

link between each origin pair is not described in the DH 

parameters.  

There is only one constraint on each link; the link must be 

physically continuous between the two joints it connects.  A 

link could be straight, curved, or angled to achieve this 

constraint.  Given no other information, it is best for 

simulation to try and visualize links in a way that accurately 

reflects joint motion.   

 An easy assumption would be to draw a line between the 

two origins.  This is a simple interpretation, but in practice is 

too often misrepresentative of the actual physical robot being 

modeled.  This assumption can lead to some difficulties in 

visualizing the movement of the robot modeled. 

The end-user often focuses on the moving links, and not 

what those link movements represent in terms of joint 

movements.   This is not desirable, as in fact it does detract 

from properly visualizing the robot for the end user.   

It is because of this undesirable consequence that this 

simulation has chosen to make a different assumption about 

link structure.  Each link in this simulator is modeled as a 

simple shape along the z axis of the origin which is has 

dimensions related to the d and a parameters from the DH 

parameters for that joint transformation. By definition, the 

n+1 origin is by distance d along the z axis and distance a 

along the x axis away from the n origin.  The approach taken 

for this simulator is to make the link d in length along the z 

axis from the origin and 2*a or a wide along the x axis, 

centered at the n origin (depending on if the joint is revolute or 

prismatic).  This approach visualizes each link along its full 

range of motion as can be seen in Section IV, Robot 

Simulations and Results.  

For prismatic joint n, a rectangular box is used in this 

simulator as the link between joints n and n+1.  This box is d 

in height along the z axis from the origin and is a wide and a 

long centered at the origin.   

For revolute joint n, a cylinder is used in this simulator as 

the link between joints n and n+1.  This cylinder is d in height 

along the z axis from the origin and has a radius of a from the 

origin.   

In order to visualize joint animation, each link has a 

minimum height and width. Only the link is drawn with these 

dimensions, the DH table for the robot is not affected. The 

default minimum height and width value of the simulator is 

10, and can be changed within the source code as necessary.   

   Additionally each joint is colored in order of appearance, 

red, blue, yellow, orange, purple, gold, army green, cyan, 

magenta, grey.  After the tenth joint, the colors repeat 

beginning again at red. 

Also of note is the difficulty in scaling the link sizes to 

show all of the joints within proportion for any robot.  This 

program sidesteps this limitation by allowing the user to zoom 

in, zoom out, and rotate the figure through the menu bar on the 

top of the GUI.   

 

B. Joint Limitations 

The limits of each joint type were arbitrarily chosen.  

Revolute joints have limits of -180º to 180º.  Prismatic joints 

have a maximum value of 150 which can be modified within 

the source code as necessary.  Some error checking is done 

within the program to ensure the user cannot enter a Theta or 

alpha angle in the DH parameter beyond the joint limits.  No 

error checking is done for the DH parameters of the prismatic 

joint d value, however this could be added easily if necessary. 

Joint limits are checked when controlling the robot 

animations.  The slider bars are only able to slide within the 

joint limits, and the edit fields check the joint limits before 

executing code.  This is to minimize the number of errors 

generated by the program if an improper input is given.   

No consideration is given to the individual links or joints 

overlapping or interfering with each other. The model allows 

for the robot joints to act independently.  This allows for 

movements in the model that would not be possible when for a 

physical robot. This effect is intentional, as it does allow the 

user to visualize when overlapping is possible.  Because of the 

link visualization implementation described above, the model 



 3 

may show two links overlapping in situations where the 

physical robot’s links may not overlap.  Without additional 

link information or joint limitations, this is unavoidable.   

 

C. Base and End Affecter 

The shapes of the base and end affecter were chosen to help 

with aesthetics and the visualization of robot movements.  The 

base is a cylinder tall enough to go from the minimum z 

coordinate of the world, to the world reference point.  The 

base cylinder is of the default link radius.  The end affecter is 

a small gripper like tool, and was added to better visualize the 

movement of the last joint.   

  Neither the base nor the end affecter is end-user editable.  

However minor changes in the source code are all that is 

necessary to change their size or appearance.     

 

D. GUI Implementation 

The simulator program opens with a welcome message and 

several buttons to choose how to load a DH table.  Figure 3 

shows this GUI.  The five buttons on the right each load a 

different pre-made robot.  The values for the DH tables of 

these robots have been saved in .mat files generated by the .m 

files.  To change these premade values, the source code for the 

.m files can be modified and run to reflect the new desired DH 

parameters.   

 

 
Fig. 3. Welcome GUI of the MATLAB program. 

The buttons on the left allow the user to work with a custom 

robot.  Load a Robot DH Table loads a premade DH table 

named Robot.mat.  This input file has certain constraints and 

needs to follow the structure of the previously made example 

robot .m files.   

Enter a DH Table allows the user to enter a DH Table with 

the GUI shown in Figure 4.  First the program asks the user 

the number of joints the robot will have in another GUI, 

Figure 5.  The size of the table in the GUI in Figure 4 is 

adjusted to reflect the number of joints entered by the user.  

The table itself has five columns.  The first column is a drop 

box to have the user choose whether the joint is either 

prismatic or revolute.  The other four columns are the DH 

parameters themselves.  This table was implemented using the 

MATLAB function uitable.  When finished entering a table, 

the user must click the Continue button to move on to the 

robot model.  This user entered DH table is saved in the file 

Robot.mat so the user may load it again when restarting the 

program.   

 
Fig. 4. GUI which determines the number of joints of a user 

loaded robot. 

 
Fig. 5. GUI which allows the user to input the parameters of the 

DH table. 

After creating or loading the DH parameters of a robot, the 

program opens up two windows.  One is a non editable table 

of the DH parameters of the robot modeled.  The second 

window, an example of which is seen in Figure 6, is the 3D 

model of the robot along with a GUI for controlling the 

animation of the joints of the robot.  The slider controls and 

edit fields allow for the user to manipulate the joints of the 

robot.  This controls initiate animation to the desired new 

position.   

 
Figure 6 The robot model GUI with kinematic controls 



 4 

The Home button returns the robot to its original position 

described by the original DH table.  The Random Move button 

creates a random motion in each of the joints of the robots. 

The New Robot button sends the user back to the welcome 

screen shown in Figure 3 to choose a new Robot to model.  A 

zoomed in picture of the kinematic panel of this GUI is shown 

in Figure 7. 

 
Fig. 7. Example kinematics control panel with buttons. 

 

E. Animation 

Animation of the robot is implemented by creating a linear 

10 step progression between the current position and the 

desired new position.  The robot is redrawn entirely for each 

new position, deleting the previously drawn robot. The 

number of steps as well as the delay between steps (0.5 sec) 

can be changed as necessary in the source code.   

 

IV. ROBOT SIMULATIONS AND RESULTS 

The robot simulator has been tested with five different robot 

configurations.  The five robots consist of the widely known 

SCARA Robot, the Puma 560, the Puma 260, one other robot 

used in reference [2] known here as Example R , and the robot 

used to originally construct the simulator, known as Tester 

Robot.   

Each robot model has been put through the full functionality 

of the program.  Ultimately the simulator program is only as 

good as how effective it is at visualizing robots, so with that 

guideline each robot will be compared to its model.  The 

reader is referred to the program itself as well as its source 

code to better familiarize himself with the accuracy of the 

models.   

A. Tester Robot 

The Tester Robot was created alongside writing the source 

code of this program.  It was intentionally made simple for the 

author to visualize the robot and its motions.  This robot was 

created before animation was implemented, so at the time, 

manually changing the DH table was the only way to ensure 

correct operation of the joints.  Because the Tester Robot was 

designed in this fashion it can only be compared to the ideal 

which the DH table defines.  The DH table for this robot is 

shown in Table 1, and the model for this robot is shown in 

Figure 8.   

 
Table 1. DH Table for Tester Robot. 

 
 

 The green shape on the bottom is the base, the green shape 

on the top is the end affecter, as described in Section III.  The 

other three shapes are the link of the robot described by the 

above table.  Upon inspection, the sizes of all the joints seem 

modeled correctly when taking into account the minimum 

joint dimensions.  Here, with all zero a parameters, each link 

is drawn with its minimum default value.   

   

 
Fig. 8. Program model of Tester Robot 

Movement of the joints of this robot, as in all of the robots 

model is easy to visualize when observing the effect of the 

motion on the later links.  Here the rotation of link 1, shown 

red, between joint 1 and joint 2 changes the orientation of all 

of the other links.  Such a rotation shows the blue and yellow 

links rotating about the axis of the red link.  This is best 

observed when interacting with the simulator and animating 

the robot with the kinematics controls.   

With this simple example, testing shows each joint to move 

properly.  A particular observation to point out is the third 

joint, shown yellow, is a prismatic joint.  When the d 

parameter of this joint is modified, this link is shown to 

extend/retract.   
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B. SCARA Robot 

The SCARA Robot is an excellent robot for testing purposes 

as it is simple yet widely known.  The DH parameters for the 

SCARA Robot are shown in Table 2.   A representation of the 

SCARA Robot is shown in Figure 9 from reference [2].  From 

this clear definition, it should be possible to understand the 

accuracy of the program’s model of the SCARA Robot, shown 

in Figure 10.   

  
Table 2. DH Table for the SCARA Robot 

 
 

 

 

 

 
Fig. 9. The SCARA Robot [2]. 

 
Figure 10.  Program model of the SCARA Robot. 

 

The comparison of Figure 9 and Figure 10 shows precisely 

the oddities of our assumptions for link visualization.  The 

first link connecting joint 1 and joint 2, shown in red, is a 

revolute joint.  It does not appear similar to the picture of the 

actual robot.  The actual robot has something closer to just a 

rectangular box connecting joint 1 and joint 2. This box is 

aligned with the x axis of joint 2 or in DH terms is rotated θ1 

about the z axis of the base.  The model of the robot  occupies 

the entire range of motion of this actual robot’s link.   

A rotation in joint 1 is represented by moving the 

subsequent links along the circumference of the red circle.  

Similarly, a rotation in joint 2 is represented by moving the 

subsequent links along the blue circle.  The prismatic joint, 

due to the assumptions in joint limitations is allowed to travel 

in the negative z direction, allowing for the link to be above 

the blue and red circles.  With this type of transformation, the 

tool is still pointed down, as would be expected as the 

prismatic joint is not revolving or reflecting in any way, it is 

merely translating along an axis.   

 

C. Puma 560 

The Puma 560 is another good robot to model.  The DH 

parameters for the Puma 560 are shown in Table 3.  A 

representation of the Puma 560 is shown in Figure 11 from 

reference [2] and the program’s model of the robot is shown in 

Figure 12.   

 
Table 3. DH Table for the Puma 560. 

 

 

Fig. 11. The Puma 560 [2].   

 Comparing Figure 11 and Figure 12, the appearance of the 

robot again looks different. The first and second links are 

visualized a bit differently than in Figure 11.   
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 Rotation in joint 1 causes the blue link and each subsequent 

link to rotate about the z axis.  This is very easy to visualize in 

the model, but is more difficult in the drawing of the Puma 

560 in Figure 11.  The drawing’s links do not seem to suggest 

a possible rotation about the base.  On closer inspection of the 

figure however, the θ1 is shown to convey this information.  In 

the model, the red link suggests such a movement 

immediately.   

 

 
Fig. 12. Program model of the Puma 560.   

 An additional advantage to this particular robot’s model is 

the yellow and pink revolute joints.  For the drawing in Figure 

11, these joints have to be described with the added axis and 

angle labels.  In the model, these joints are shown as 

minimally sized links, yielding immediate information on their 

motion capabilities.   

D. Puma 260 

The DH parameters for the Puma 260 are shown in Table 4.  

An actual picture of the Puma 260 is shown in Figure 13 and 

the program’s model of the robot is shown in Figure 14.  The 

model is difficult to visualize in the default view, so Figure 14 

shows the model rotated and zoomed in, a feature of the 

simulator program describe in Section III.   

 
Table 4. DH Table for the Puma 260.  

 

Comparing the two images, the 2
nd

 link seems particularly 

different in appearance.  This again is an artifact of the 

assumptions made about visualizing the links without link 

information. However, the link gives immediate information 

about the motion of its joint.  Rotation about z axis of the blue 

joint will be reflected in the yellow and subsequent joints 

moving along the circumference of the blue cylinder.   

 
Fig. 13. The Puma 260. 

 
 

Fig. 14. Program model of the Puma 560.  The model has been 

rotated and zoomed in for this image.   

E. The Example R 

The Example R Robot is shown in Figure 15 from reference 

[2].  The DH parameters for Example R are shown in Table 5 

and the program model of the robot is shown in Figure 16.  

 
Table 5. DH Table for the Example R Robot 
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Fig. 15. The Example R Robot [2].   

 
Fig. 16. Program model of the Example R Robot. 

The Example R model seems to accurately reflect the 

appearance of the robot and depicts information about the 

movements of the joints.  It is a good example of how links of 

prismatic joints are drawn.   

V. CONCLUSION 

The robot simulator program developed allows for the 

modeling of any robot given a set of DH parameters.  Given 

the assumptions made in visualization of the links, the 

program was shown to adequately model several example 

robots.   While the simulator may not always accurately 

visualize each link properly, the models tend to represent the 

links in ways that help the user understand the dynamic 

motion of the robot.   

This program would be an excellent teaching device for the 

study of robots.  The source code could be adapted easily to 

more accurately model any specific robot for advanced study.     

Future recommendations for improvement of the simulator 

program include more robust error handling, the stability to 

handle multiple button presses when animating, and user 

definable range of motion limits to each joint.  Also, the 

option of including more link information possibly in the form 

of a CAD file could be implemented for more accurate 

visualization.  Additional work could be done to make the 

simulator backward compatible with previous versions of 

MATLAB.  The program was written with MATLAB version 

7.8.0.347 (R2009a), 64-bit edition.  Some uicontrol functions 

used are not supported by older versions of MATLAB and can 

cause the program to have errors or not run.   
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