
EECS 4340/7340 Building Intelligent Robots, Fall 2023

Copyright © 2023 ViGIR-Lab Jacket Demby’s

1

Lab 3

Dead Reckoning W/ and W/O IMU

Objective
The goals are to

- Understand the concept of dead reckoning using odometry

- Learn robot navigation using feedback control

- Experience Arduino programming, Inertia Measurement Unit (IMU) sensor,

and linking ROS with Arduino

- Understand advantage and/or disadvantage of IMU

Reference Materials
• ROS Website: wiki.ros.org/ROS/Tutorials: Section 6-8

• Learning ROS for Robotics Programming by Aaron Martinez, Enrique

Fernandez: Chapter 3, 4

• ROS By Example by R. Patrick Goebel: Chapter 8

• Introduction to Autonomous Mobile Robots by Siegwart, Nourbakhsh, and

Scaramuzza: Chapter 3

• Lecture Notes 7-11

• “Robotics, Vision and Control” by Peter Corke: 4.1.1.4

• Arduino Website: https://www.arduino.cc/en/Tutorial/HomePage

• MPU6050 Tutorial: http://playground.arduino.cc/Main/MPU-6050

 https://diyhacking.com/arduino-mpu-6050-imu-sensor-tutorial/

http://wiki.ros.org/ROS/Tutorials
https://www.arduino.cc/en/Tutorial/HomePage
http://playground.arduino.cc/Main/MPU-6050
https://diyhacking.com/arduino-mpu-6050-imu-sensor-tutorial/

EECS 4340/7340 Building Intelligent Robots, Fall 2023

Copyright © 2023 ViGIR-Lab Jacket Demby’s

2

Prelab
1. Summarize and describe http://wiki.ros.org/roscpp/Overview/Time tutorial.

2. Define Odometry and explain its importance in mobile robots.

3. What are the ROS topics and their related message types to use/monitor for

the following tasks:

a. Move the robot forward

b. Rotate the robot

c. Find the current pose of the robot

d. Retrieve the IMU data

4. Give the sequence of ROS commands to find the message type of the “/odom”

topic. What message type did you find? Provide the meaning of the message

fields.

5. What is tf broadcaster? Explain (see http://wiki.ros.org/tf2/Tutorials)

6. Explain what is IMU and how it can help us?

7. What are the outputs of MPU6050?

8. Briefly introduce Arduino board and its advantages/capabilities?

http://wiki.ros.org/roscpp/Overview/Time
http://wiki.ros.org/tf2/Tutorials

EECS 4340/7340 Building Intelligent Robots, Fall 2023

Copyright © 2023 ViGIR-Lab Jacket Demby’s

3

Background

Feedback Control: In this lab, you will understand the importance of the feedback

gains in a discrete state feedback control for dead reckoning of the robot. The figure

below shows the standard full state feedback diagram:

where here the states are in polar coordinate [𝜌, 𝛼, 𝛽]𝑇 and the desired reference is

[𝜌𝑑 , 𝛼𝑑 , 𝛽𝑑]𝑇 = [0, 0, 0]𝑇, control signals [𝜐, 𝜔]𝑇 are the linear and angular

velocities and [𝐾𝜌, 𝐾𝛼 , 𝐾𝛽] are the control gains which should be tuned by

experiments. The equations can be derived as:

[
𝜐
𝜔] = [

𝐾𝜌 0 0

0 𝐾𝛼 𝐾𝛽
] × [

𝜌̇
𝛼̇
 𝛽̇

]

[

𝜌(𝑘 + 1)
𝛼(𝑘 + 1)
 𝛽(𝑘 + 1)

] = [

−𝐾𝜌𝑐𝑜𝑠𝛼

𝐾𝜌𝑠𝑖𝑛𝛼 − 𝐾𝛼𝛼 − 𝐾𝛽𝛽

−𝐾𝜌𝑠𝑖𝑛𝛼
]

The output here is the pose of the robot [𝑋, 𝑌, 𝜃] that should be monitored during the

movement of the robot using odometry information. Note that here the system is the

robot kinematics in polar coordinate. The conversion from Cartesian to polar

coordinate can be found in the reference materials.

IMU Sensor: you will also be using an Arduino UNO (figure b) board to collect data

from an IMU sensor, MPU6050, shown in figure (a):

(a) MPU6050 (b) Arduino UNO

The IMU sensor has been mounted on the robot (approximately aligned with x

pointing forward and y pointing left). The Arduino board collects data from sensor

through I2C protocol and send them to raspberry pi through USB serial port (see

reference material how to use rosserial package). Your task is to control the robot

using orientation (𝜃) coming from IMU sensor and position (x, y) coming from the

wheel odometry.

EECS 4340/7340 Building Intelligent Robots, Fall 2023

Copyright © 2023 ViGIR-Lab Jacket Demby’s

4

Lab Procedure

Week 1: Implementation of Dead Reckoning
In this part, you will implement the dead reckoning using feedback control and test

your program in the simulator (e.g. Stage or Gazebo). You will need odometry

information published by the simulator under the /odom topic. Write your program

to navigate the robot to the four goal poses as specified in Figure 1 which shows four

experiments that need to be performed. For each experiment, report the error

measured between the desired goal and the reached goal.

Below are some high-level steps you can take to implement your code:

1. Write the odometry callback function to subscribe to /odom topic and get the

pose of the robot. This is the robot pose at current time frame i.

2. Write a function to convert cartesian coordinate to polar coordinate frame.

3. Write a function to transform between coordinate frames and convert the robot

pose with respect to Goal frame.

4. Implement a discrete state feedback control using the above equations (look

at the lecture notes for detailed equations). That is find the velocity command

from feedback controller and send it robot. Try to tune feedback gains and

report all your experiments.

Figure 1

EECS 4340/7340 Building Intelligent Robots, Fall 2023

Copyright © 2023 ViGIR-Lab Jacket Demby’s

5

Week 2: Dead Reckoning W/O IMU

Part 1: in the simulator
In this part, you will empirically choose the feedback gains of the dead reckoning

and test a feedback control program in the simulator.

1. Download the incomplete feedback control program from Canvas.

2. Understand all the functions in the feedback control program.

3. Complete the missing statements in the feedback control program.

Using your implementation from Part 0 or the provided implementation for which

you have completed the missing statements:

4. Find the right set of [𝐾𝜌, 𝐾𝛼 , 𝐾𝛽] feedback gains to reproduce Figures 2 and

3 where the robot needs to navigate to 8 final poses from 2 starting poses.

5. Save and plot the robot trajectories as in Figures 2 and 3 to include in your

final report.

6. For each goal, report the error between the desired final pose and the reached

pose.

7. Reproduce the experiments from Part 0 (look at Figure 1).

Part 2: in a real environment
Once you have tested your program using the simulator, you can run it on the real

robot. You may need to change feedback gains and re-tune them to get best results.

1. Are the feedback gains tuned in the simulator performing the same with the

real robot when trying to reproduce Figures 2 and 3? How about for the

experiments from Part 0 (Figure 1) performed in the simulator?

2. Save and plot the robot trajectories as in Figures 2 and 3 to include in your

final report.

3. For each goal, report the error between the desired final pose and the reached

pose.

EECS 4340/7340 Building Intelligent Robots, Fall 2023

Copyright © 2023 ViGIR-Lab Jacket Demby’s

6

Figure 2

Figure 3

EECS 4340/7340 Building Intelligent Robots, Fall 2023

Copyright © 2023 ViGIR-Lab Jacket Demby’s

7

Week 3: Moving the robot using the IMU

Part 1: Getting Started with Arduino and IMU (MPU-6050)
In this part, you will start using the Arduino board to collect data from IMU sensor.

Make sure you have reviewed the reference materials related to the Arduino board

and the MPU-6050 sensor. Below are the steps for this part:

1. Arduino board: Arduino UNO is assembled on Create 2 robots and connected

to raspberry pi through USB port. Log in to your raspberry pi ($slogin –Y

pi@10.14.1.23x) and run $arduino, you will see the Arduino IDE. You can write

your program and compile by pressing tick button and upload to the board by

pressing arrow button. You can use Arduino library where language reference

can be found from reference material. Write a simple hello world program and

try to learn Arduino IDE environment, analog/digital ports and communication

over serial port.

2. MPU-6050: An IMU sensor, MPU-6050 is also assembled on the robot and

connected to Arduino board. Check all wiring and make sure they are connected

to the right pins (see reference material). The sensor sends data through I2C

protocol where two wires are required (SDA: pin A4, SCL: pin A5). All libraries

required for this sensor can be found under ~/sketchbook /libraries directory on

the raspberry pi. You can open an example in IDE by

File>Examples>MPU6050>MPU6050_DMP6. Try to go through the examples and

understand the sample codes, upload to the board and monitor the data. Is there

any consideration that should be taken? Interpret the data obtained by

sensor when you move the robot.

Your Code

Pre-Compile

(Verify)

Upload to Board

Monitor Serial Port

Serial Port #

Compile/Upload Progress

Messages

Figure 4

EECS 4340/7340 Building Intelligent Robots, Fall 2023

Copyright © 2023 ViGIR-Lab Jacket Demby’s

8

Part 2: Making Arduino as a ROS node
In this part, you will make the Arduino to act as a node communicating with the

master running on your raspberry pi. That is, using the rosserial library (see reference

material); program the Arduino board to publish IMU data under a topic name so

that your navigation node can subscribe to that topic and read the data. Follow the

steps below to finish this part:

1. Write a talker node and upload it to the Arduino board. Use the listener node

you wrote in lab2 to subscriber to the Arduino talker and print the received

messages. Go to ~/sketchbook/libraries directory and run:

$ rm –rf ros_lib

$ rosrun rosserial_arduino make_libraries.py .

This will create ros libraries required to upload your talker code to Arduino

board. Now you can run your talker and listener node by:

$ roscore

$ rosrun rosserial_python serial_node.py _port:=/dev/ttyACM0

make sure you are using right serial port (see figure above). Now you can run

your listener node to print messages sent by talker.

2. Combine the Arduino example code (MPU6050) with above to write a node

collecting data from IMU sensor and publishing to an appropriate topic (e.g.

/imu).

3. Show the data sent by your program using $rostopic echo /topic_name. Use

rqt_plot node to illustrate your results.

4. Finally, modify your week 1 codes to get the position from the Odometry and

the orientation from the IMU sensor. Use Rviz to visualize the movement of

the robot and plot the robot’s path.

Extra Credit (30 pts):
5. Modify your feedback implementation to get the position and orientation from

IMU sensor. Use Rviz to visualize the movement of the robot and plot the

robot’s path.

EECS 4340/7340 Building Intelligent Robots, Fall 2023

Copyright © 2023 ViGIR-Lab Jacket Demby’s

9

Post Lab Questions:
1. Derive the two equations used for feedback control? Did you locate both

equations in the feedback control program?

2. How varying each feedback gain 𝐾𝜌, 𝐾𝛼 , 𝐾𝛽 affects robot motion? Explain

with your experiments.

3. Is there any value for feedback gains that make the robot unstable? Explain

with your experiments.

4. What are the outputs of IMU sensor? How are they correlated with the robot?

Plot all possible outputs of the sensor and describe each of them?

5. Is there any consideration for the IMU sensor? Are you getting accurate data

from the IMU sensor? Explain by your experiments.

6. What message type did you use to publish IMU data, and why? Is there any

limitation for a specific message type?

