From the previous example:

Change of coordinate system (polar)
\[
\begin{bmatrix}
\frac{\partial^2 z}{\partial \phi^2} - \frac{\partial^2 z}{\partial \phi_1 \partial \phi_2} \\
\frac{\partial^2 z}{\partial \phi_1 \partial \phi_2} - \frac{\partial^2 z}{\partial \phi_2 \partial \phi_3} \\
\frac{\partial^2 z}{\partial \phi_2 \partial \phi_3} - \frac{\partial^2 z}{\partial \phi_3 \partial \phi_1}
\end{bmatrix} = \begin{bmatrix}
\mathbf{A}
\end{bmatrix}
\]

such as the Koamga (for differentiable robots)
AND FROM PREVIOUS LINES.

AND IS

\[
\int \begin{bmatrix} \phi \\ \phi_1 \\ \phi_2 \end{bmatrix} \text{ instead of} \int \begin{bmatrix} \phi \\ \phi_1 \end{bmatrix}
\]

For the case we can only control the velocity.
We use

\[
\begin{bmatrix}
0 & \frac{1}{\sin \alpha} \\
\frac{1}{\sin \alpha} & \cos \alpha \\
\end{bmatrix}
\]

Note: The expression in (8) is correct if

\[
\begin{bmatrix}
x' \\
y' \\
\end{bmatrix} = \begin{bmatrix}
x \\
y \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\end{bmatrix} = \begin{bmatrix}
0 & -\frac{1}{\sin \alpha} & \frac{1}{\sin \alpha} \\
\frac{1}{\sin \alpha} & 0 & -1 \\
\cos \alpha & \frac{1}{\sin \alpha} & 0 \\
\end{bmatrix}
\]

\[
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\end{array} \right] = \left[\begin{array}{c}
0 \\
\frac{1}{\sin \alpha} \\
\cos \alpha \\
\end{array} \right] = \left[\begin{array}{c}
0 \\
\frac{1}{\sin \alpha} \\
\cos \alpha \\
\end{array} \right]
\]

And for the case where \(\alpha = \frac{\pi}{2} \),

\[
\begin{bmatrix}
x' \\
y' \\
\end{bmatrix} = \begin{bmatrix}
x \\
y \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\end{bmatrix} = \begin{bmatrix}
0 & -\frac{1}{\sin \alpha} & \frac{1}{\sin \alpha} \\
\frac{1}{\sin \alpha} & 0 & -1 \\
\cos \alpha & \frac{1}{\sin \alpha} & 0 \\
\end{bmatrix}
\]

\[
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\end{array} \right] = \left[\begin{array}{c}
0 \\
\frac{1}{\sin \alpha} \\
\cos \alpha \\
\end{array} \right] = \left[\begin{array}{c}
0 \\
\frac{1}{\sin \alpha} \\
\cos \alpha \\
\end{array} \right]
\]

So, for the feedback pair of the loop:
First, the forward part of the control loop

\[\text{Detect and correct errors and apply the control}\]

For each segment of the transaction, do:

So, what should your algorithm look like?
5) Find the next segment of the trajectory and test if it is in the region. If it is, print: "The region is zero." Otherwise, iterate until the region is zero. Then, feed back part of the CL by adjusting the control error and (continuously) calculating the new error. Move, monitor the CL.
noun: dead reckoning

1. The process of calculating one's position, especially at sea, by estimating the direction and distance traveled rather than by using landmarks, astronomical observations, or electronic navigation methods.

2. A method of estimating the position of a vehicle such as an aircraft or a ship based on its previous position and its course and speed over a known interval of time.

(The word '.odometry' is misspelled as 'odomentry'.)