Electronics - Single Structures

- Size of a Semi-conductor

- Builker (2-3 weeks)

- Slow to settle to a

- Hall Effect / fLx Gmrt

- Compass

drive

- Electron

- Cycles / Resodium & Hours

- "Orbital Exciters"
\[e = IM \]

- **Free CCM**
- **Free CCM Associate**
- **Clockwise Counter**
- **Clockwise**

- **Load Cell Optoelectronic**
- **Optoelectronic**

- **Mechanical**

- **Gyrosopic**
\(C_{\text{mass/viscous}} \)

\(\gamma_{\text{damping}} = 50 \text{ KHz (Piezo ceramic)} \)

\(\text{Starts} = 0 - 500 \text{ Hz} \)

Measurement = \(\text{Damping} \)

\(\text{Gain} = 6 \times \) Sensing + Mass = M & \text{spring elements} \)

\[m \frac{\alpha}{k} = 0 \]

\(\text{Damping} \)

\(\text{Mass} \)

\(\text{Spring} \)

\(\text{Mechanical} \)

\(\text{Accelerometer} \)
Large drifts due to gravity removal resistance

Double integration = Other sensors

Reset using noise

IMUs

Gyros + Accel's

Orientation + Position = Pose
GPS satellites have atomic clocks, but GPS receivers do not. So a GPS receiver does not use the GPS clock to determine location of the GPS receiver. One way of doing the calculation is to consider three satellites at right angles and the intersection of the two spheres A and B. This is the point where the receiver is located. To compute this, the receiver must first solve for the time (t) of the GPS signal's transmission and it's ID. The receiver uses the transmission time to compute the distance to each satellite. Six planes of 55 measures are used to compute a position.