\[2^k = R^k \ (x^0, \ u^k) \]

And now we measure noise to states (System Model):

\[x^k = f (x^{-1}, u^{-1}) \]

We may know how the system evolves.

But we can also observe \(x \).

We cannot "see" \(x \).

Goal: Estimate \(x \) - the current state of the system.

Dynamic State Estimation
The system model \(f(x) \) is a nonlinear function of the next state \(x_t \).

If we know \(P(x_t | x_{t-1}) \), maybe we can use it.

We assume that:

Proposition:

\[
P(x_t | z_t) = \int P(x_t | x_{t-1}) P(z_t | x_{t-1}) \, dx_{t-1}
\]

Recursion Identity: If we know \(P(x_t | x_{t-1}) \), then we know \(P(x_t | z_t) \), and hence the recursive Bayesian approach involves the following:

Estimate \(P(x_t | z_t) \) and use it for the non-linear part of the problem.

But this problem is non-linear.
\[
\frac{p(z_{1:t} | x_{1:T})}{p(x_{1:t})} = \frac{p(z_{1:t} | x_{1:T})}{p(z_{1:t})} \frac{p(x_{1:T} | z_{1:t})}{p(x_{1:T})}
\]

Update once \(x \) becomes available, else freeze.

Can we use the system model?

Maximize process of \(G \)
This PDF cannot be rendered by calculating analytically. And the factor that

\[
\int p(x_1, \ldots, x_n) \, dx_1 \ldots dx_n
\]

is a function of the previous parameters. The model of measurement is

\[
p(x_1 | x_2, \ldots, x_n) = \frac{p(x_1, x_2, \ldots, x_n)}{p(x_2, \ldots, x_n)}
\]

Previous PPF

Previous Model

Update (1)
Given \(\mathcal{N}(m, \xi) \) and \(\mathcal{N}(m', \xi') \)

To be assumed

What is:

AND THE PDF'S ARE GAUSSIAN?

WHAT IF \(f(x) \) \& \(f(x') \) ARE LINEAR

| ALMAN FLETCHER |
\[S = \frac{1}{2} p \left(\frac{1}{2} k \right) + \frac{1}{2} \]

\[k = \frac{1}{(2)^{l-1}} \cdot \frac{1}{S-1} \]

\[p_{l+1} = p_{l} - k \cdot p_{l-1} \]

\[m_{l+1} = m_{l} + k \cdot (z_{l+1} - z_{l}) \]

\[m_{l}|_{k=0} = m_{l-1} + \int_{p_{l+k}}^{p_{l}} \]

\[P_{l+1} = 0 + \int_{p_{l}}^{p_{l+k}} \]

(1st Law: Force = Mass * Acceleration)

(2nd Law: Force = Mass * Acceleration)

(3rd Law: For every action, there is an equal and opposite reaction)
Let or Minge:\n\[\text{let or Minge} \]

Samoe as before, except that:

Samoe as before, except that:

Where linear?

Where linear?

What \(f(0) \) and \(f'(0) \) not linear.

\[f \]