Restrict more algebraic (complex) search

be found since a search (usually) can be published more difficult (complex) search

Step (ii) allows for more and better (interest points to

Step (ii) usually involves minimization or LM, but

\(o \) Re-compute Interest points using Guided matching

\(u \) Re-estimate Spatial estimation of \(H \) for all images

\(i \) Apply RANSAC (Random Sample Consensus)

\(l \) Compute putative correspondences (e.g., NCC)

\(p \) Compute Interest points (e.g., HIC)

\(c \) Estimate Transformation

Robust Homography
How many outliers can it detect/discriminate?

Robust Line Estimation: 1. Select line: (x) Random

KAMSA
sample has no outliers for a given size of sample, and proportion of outliers, e.

Table 4.3. The number of samples required to ensure, with a probability of $p = 0.99$, that at least one

<table>
<thead>
<tr>
<th>Sample size</th>
<th>8%</th>
<th>5%</th>
<th>3%</th>
<th>2%</th>
<th>1%</th>
<th>0.5%</th>
<th>0.2%</th>
<th>0.1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1177</td>
<td>22</td>
<td>17</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>888</td>
<td>16</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>589</td>
<td>12</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>293</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proportion of outliers:

\[
\sigma_N = \frac{(1-p)}{(1-(1-e^(-\frac{0.99}{N}))}
\]

\[
N = \frac{\ln(1-p)}{\ln(1-(1-e^{-0.99}))}
\]

Selections (each of 5 points) are required, where

\[
\text{Outliers} = 1 - \frac{N}{E}
\]

If E is the probability x is an outlier,

\[
\text{Probability} = p = 0.99
\]

An arbitrary number of points is free of outliers. P of that one of the random samples with

We need no samples to guarantee our probability.

\underline{Number of samples:} unnecessary to use all samples.
Choose H or G based on # of indices |

\[\text{C} \geq \text{D} \quad \text{(i.e. D > 1/3\sqrt{N})} \]

3) Compute the # of indices consistent w/ H

Partitive Correspondences

2) Compute the distance dL for all other and compute N (homographic) \((L = 4) \)

1) Select a random sample of N correspondences

Given the allocation for N above

Algorithm: Allocation: (step iii) or Homomorphic algorithm

1. Increment sample_count
2. Set V as above
3. Set \(e = \frac{1}{1 - \text{(#inliers)/total number of points}} \)
4. Choose a sample & count # inliers
5. While \(N \geq \text{sample_count} \)
6. \(N = \infty \) ? Sample_count = 0

See N: Allocation: N = 0 \(\Rightarrow \) Sample_count = 0
\[
\begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} = \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} \iff \text{(Direct Linear Transform)} \quad A \neq 0.
\]

Note: If the row and column are symmetric, then we can write as we did in.

\[
\begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} = \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} \iff \text{(Direct Linear Transform)} \quad A \neq 0.
\]

\[
\begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} = \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} \iff \text{(Direct Linear Transform)} \quad A \neq 0.
\]

\[
\begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} = \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} \iff \text{(Direct Linear Transform)} \quad A \neq 0.
\]

\[
\begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} = \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} \iff \text{(Direct Linear Transform)} \quad A \neq 0.
\]

\[
\begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} = \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} \iff \text{(Direct Linear Transform)} \quad A \neq 0.
\]

\[
\begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} = \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} \iff \text{(Direct Linear Transform)} \quad A \neq 0.
\]

\[
\begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} = \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} \iff \text{(Direct Linear Transform)} \quad A \neq 0.
\]

\[
\begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} = \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} \iff \text{(Direct Linear Transform)} \quad A \neq 0.
\]
Corners (i.e., 3 of 4)
can guarantee they are not
Note: 4 pts are sufficient if you

\[\begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4
\end{bmatrix} \]

is the last column of

\[(A^T V A) \]

vector of \(A = V U^T \)

since \(\Sigma \) is the (column) null

\(A \) is \(8 \times 9 \) which is still \(G \)

\(\) of equations.

\[\begin{align*}
\text{Note: 4 corresp. points } & \rightarrow \ 8 \times 9 \text{ system } \\
\text{corresp. points gives 2 rows. } & \text{ if we}
\end{align*} \]

\(\) to solve for \(\frac{1}{a} \) each

(\text{cont})
\[n = \frac{q (1 - q)}{q (1 - q) / \left(1 - (1 - e) v^2\right)} \]

\[e = \text{tmp} ; \]
\[e = e - \text{tmp} ; \]
\[\text{tmp} = 1 - \text{current-max} \]
\[\text{Length} (\text{Coarse-Points}) ; \]
\[\text{Initires} \]
\[\text{current-max} = \text{Length (Initires)} ; \]
\[\]
n = # of integers after commas (e. the end for Pianch H)

n = 4 in \text{reference to estimation (or scale 5 & 6)}

and in parts of corresponding points, where:

1) Comp - Homog () - this function computes the

Kovariability. H, using JLT change (scale 5 & 6)

2) This step is "optimal" if you opt to use steps

Be "smarter" when applying this to "full 3 out of 4"

(0 \leq c \leq 1) \quad \text{and} \quad (a-b) \boxtimes (a-c) \geq 0

(0 \leq a \leq b) \quad \text{and} \quad (a-b) \boxtimes (a-c) \geq 0

\text{or 3) } \quad \text{for } \theta = \pi \text{ and so on...}

\text{in all 3 out of 4 points. You could use:}

\text{there are "smarter" ways to check collinearity.}

\text{co-linear \rightarrow co-linear points. Good to singular H.}

Notes: 1) the 4 pairs are "good" if they are not
So, instead: \(x' = \frac{x}{y} \)

If it is not: \(x = \frac{y}{x} \)

\[\left[\begin{array}{c} x' \\ y' \end{array} \right]_{\mathbb{R}^2} = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \quad \text{or} \quad x' = \frac{y}{x} \quad \text{or} \quad \sqrt{\frac{y}{x}} \]

Remember: \(y = \frac{x}{x'} \)

That all integers are within \(r = \sqrt{\frac{y}{x}} \)

That would guarantee an arbitrary probability of integers or outcomes. In other words, guarantee an arbitrary \(a \) for the distribution to calculate the number of outcomes that would update a linear function. Instead, you would be very careful here! You do not want to calculate disturbance (3)
In case someone wants to synthesize some data to test their algorithm, a homography can be decomposed as:

\[F = x(R + t n) \]

where:

- \(d = \) distance of \(T \) to \(C \)
- \(n \) = normal vector of plane \(C \)
- \(R \) = rotation between cameras \(C \& C' \)
- \(t \) = translation of \(C \) w.r.t. \(C' \)

\(T \) can be obtained in this way.
Comments on NW2

1) contracts / slang / colloquial
2) explain variables in eq.
3) divide report into: intro / approach / test / results
4) code as appendix
5) clear notation
6) spell check
7) edit equations
8) add caption to figures & cite figures in text
9) left (center = 0 Right) / epipole
10) can't solve for x y z coord. of epipole
11) assignment was for clicking on both sides.