Bayesian Networks

Graphical Models – Motivation

- Simple way to visualize probabilistic models
- Can lead to new models of inference
- Inspection of the graph can lead to conclusions on the constraints/properties of the variables (e.g. conditional independence)
- Complex inferences can be expressed as graphical manipulations
Bayesian Networks

Directed Acyclic Graph (DAG)

\[p(a, b, c) = p(c|a, b)p(a, b) = p(c|a, b)p(b|a)p(a) \]

\[p(x_1, \ldots, x_K) = p(x_K|x_1, \ldots, x_{K-1}) \cdots p(x_2|x_1)p(x_1) \]

Note: No assumptions or constraints are being imposed on the nature of parameters of \(p(.) \).
Bayesian Networks

\[p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]
\[p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5) \]

General Factorization

\[p(x) = \prod_{k=1}^{K} p(x_k|\text{pa}_k) \]
Bayesian Curve Fitting (1)

Polynomial

\[y(x, w) = \sum_{j=0}^{M} w_j x^j \]

\[p(t, \omega) = p(t | \omega) p(\omega) = p(\omega) \prod_{n=1}^{N} \varphi(t_n | \omega) \]
Bayesian Curve Fitting (2)

\[P(t, \omega) = P(\omega) \prod_{n=1}^{N} P(t_n | \omega) \]
Bayesian Curve Fitting (3)

Input variables and explicit hyperparameters

\[p(t, w|x, \alpha, \sigma^2) = p(\omega|x, \alpha, \sigma^2)^p(t|\omega,x, \alpha, \sigma^2) = p(w|\alpha) \prod_{n=1}^{N} p(t_n|w, x_n, \sigma^2). \]

cond. independence

sufficiency
Bayesian Curve Fitting—Learning

Condition on data

\[p(\omega | t) = \frac{p(\omega) p(t | \omega)}{p(t)} \implies p(w | t) \propto p(w) \prod_{n=1}^{N} p(t_n | w) \]
Bayesian Curve Fitting—Prediction

Predictive distribution:
(given new \(\hat{x} \rightarrow \hat{t} \))

\[
p(\hat{\epsilon} | \hat{x}, x, t, \alpha, \sigma^2) = \frac{p(\hat{\epsilon}, t | \hat{x}, x, t, \alpha, \sigma^2)}{p(t)}
\]

\[
p(t | \hat{x}, x, t, \alpha, \sigma^2) \propto \int p(t, w | \hat{x}, x, \alpha, \sigma^2) \, dw
\]

where

\[
p(t, w | \hat{x}, x, \alpha, \sigma^2) = p(t | x, w, \hat{x}, \alpha, \sigma^2) \cdot p(w | \alpha) \cdot p(\hat{\epsilon} | \hat{x}, x, t, w, \sigma^2)
\]

\[
p(t, w | \hat{x}, x, \alpha, \sigma^2) = \prod_{n=1}^{N} p(t_n | x_n, w, \sigma^2) \cdot p(w | \alpha) \cdot p(t | \hat{x}, w, \sigma^2)
\]
Generative Models

Causal process for generating images

\[
p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \\
p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)
\]

Draw \(x_1, x_2, \text{ and } x_3\) from \(p(x_1), p(x_2), p(x_3)\), respectively.

Draw \(x_4\) from \(p(x_4|x_1, x_2, x_3)\).

Draw \(x_5\) from \(p(x_5|x_1, x_2)\).
Generative Models

Causal process for generating images

Object → Position → Orientation → Image
Complexity of Graphical Models?

Complexity with the number of parameters

Two most interesting cases:

Discrete Variables

Linear-Gaussian Models
Discrete Variables (-1)

Multinomial Distributions

\[X \text{ = variable w/ } K \text{ possible states (e.g. } K \text{ colors of balls) } \]

\[\mu_k = \text{ probability of each state} \]

\[x_k = \# \text{ of elements in state } k (\text{e.g. } \# \text{ of balls of color } k) \]

\[p(x|\mu) = \frac{\Gamma \left(\sum_{k=1}^{K} (x_k+1) \right)}{\prod_{k=1}^{K} \left(\Gamma(x_k+1) \right)} \prod_{k=1}^{K} \mu_k^{x_k} \left(\sum_{k=1}^{K} \mu_k = 1 \right) \]

\[m = \sum_{k=1}^{K} x_k \text{ (n balls sampled)} \]

\[\text{if } n=1 \Rightarrow p(x|\mu) = \prod_{k=1}^{K} \mu_k^{x_k} \]
Discrete Variables (0)

\[P(x | \mu) = \frac{K}{\prod_{k=1}^{K} \mu_k} x_k \quad \text{Since} \quad \sum_{k=1}^{K} \mu_k = 1 \]

\[\Rightarrow \text{only } K-1 \text{ parameters are required.} \]

Note: \(\Gamma(\cdot) = \text{gamma function} \)

\[\Gamma(n) = \int_0^\infty z^{n-1} e^{-z} \, dz \]

\[= n \Gamma(n) \quad \Rightarrow \text{for } n \in \mathbb{N} \]

\[\Gamma(n+1) = n! \]
Discrete Variables (1)

General joint distribution: $K^2 - 1$ parameters

Independent joint distribution: $2(K - 1)$ parameters
Discrete Variables (2)

General joint distribution over M variables:

$K^M - 1$ parameters

M-node Markov chain: $K - 1 + (M - 1)K(K - 1)$ parameters

$p(x) = \prod_{k=1}^{M} (x_k | \rho_k)$
Discrete Variables: Bayesian Parameters (1)

\[p(\{x_m, \mu_m\}) = p(x_1 | \mu_1) p(\mu_1) \prod_{m=2}^{M} p(x_m | x_{m-1}, \mu_m) p(\mu_m) \]

\[p(\mu_m) = \text{Dir}(\mu_m | \alpha_m) \quad \text{(Dirichlet)} \]
Discrete Variables: Bayesian Parameters (1.5)

\[p(\{x_m, \mu_m\}) = p(x_1 | \mu_1) p(\mu_1) \prod_{m=2}^{M} p(x_m | x_{m-1}, \mu_m) p(\mu_m) \]

\[p(\mu_m) = \text{Dir}(\mu_m | \alpha_m) \]

\[\text{Dir}(\mu) = \frac{\prod_{i=1}^{M} \Gamma(\mu_i)}{\Gamma\left(\sum_{i=1}^{M} (\mu_i)\right)} \prod_{i=1}^{M} \mu_i^{\alpha_i-1} \times \prod_{i=1}^{M} x_i^{\mu_i-1} \]

Note: Dirichlet is the multivariate case of a Beta(\(x, \beta\)) dist. (a conjugate prior of a Bernoulli Binomial)
Discrete Variables: Bayesian Parameters (2)

$$p\left(\{x_m\}, \mu_1, \mu\right) = p(x_1 | \mu_1) p(\mu_1) \prod_{m=2}^{M} p(x_m | x_{m-1}, \mu) p(\mu)$$
Parameterized Conditional Distributions

If x_1, \ldots, x_M are discrete, K-state variables, $p(y = 1|x_1, \ldots, x_M)$ in general has $O(K^M)$ parameters.

The parameterized form

$$p(y = 1|x_1, \ldots, x_M) = \sigma \left(w_0 + \sum_{i=1}^{M} w_i x_i \right) = \sigma \left(\mathbf{w}^T \mathbf{x} \right)$$

requires only $M + 1$ parameters.
Linear-Gaussian Models

Directed Graph

\[p(x_i | \text{pa}_i) = \mathcal{N}\left(\begin{array}{c} x_i \\ \sum_{j \in \text{pa}_i} w_{ij} x_j + b_i \end{array} \right), \quad v_i \right) \]

Each node is Gaussian, the mean is a linear function of the parents.

Vector-valued Gaussian Nodes

\[p(x_i | \text{pa}_i) = \mathcal{N}\left(\begin{array}{c} x_i \\ \sum_{j \in \text{pa}_i} W_{ij} x_j + b_i \end{array} \right), \quad \Sigma_i \right) \]
Conditional Independence

\(a \) is conditionally independent of \(b \) given \(c \)

\[p(a|b, c) = p(a|c) \]

Equivalently

\[p(a, b|c) = p(a|b, c)p(b|c) = p(a|c)p(b|c) \]

Notation

\(a \perp b \ | \ c \)
Conditional Independence: Example 1

\[p(a, b, c) = p(a|c)p(b|c)p(c) \]

\[p(a, b) = \sum_c p(a|c)p(b|c)p(c) \]

if \[p(ab) \neq p(a) \cdot p(b) \]

\[\Rightarrow a \not\perp b \mid \emptyset \]
Conditional Independence: Example 1

\[p(a, b, c) = p(a|c)p(b|c)p(c) \]

\[p(a, b|c) = \frac{p(a, b, c)}{p(c)} = p(a|c)p(b|c) \]

\[a \perp b \mid c \]
Conditional Independence: Example 2

\[p(a, b, c) = p(a)p(c|a)p(b|c) \]

\[p(a, b) = p(a) \sum_c p(c|a)p(b|c) = p(a)p(b|a) \]

\[a \perp b \mid \emptyset \]
Conditional Independence: Example 2

\[
p(a, b | c) = \frac{p(a, b, c)}{p(c)}
\]

\[
= \frac{p(a)p(c|a)p(b|c)}{p(c)}
\]

\[
= p(a|c)p(b|c)
\]

\[a \perp b \mid c\]
Conditional Independence: Example 3

\[p(a, b, c) = p(a)p(b)p(c | a, b) \]

\[p(a, b) = p(a)p(b) \]

\[a \perp b \mid \emptyset \]

Note: this is the opposite of Example 1, with \(c \) unobserved.
Conditional Independence: Example 3

Note: this is the opposite of Example 1, with \(c \) observed.
"Am I out of fuel?"

\[
p(G = 1 | B = 1, F = 1) = 0.8 \\
p(G = 1 | B = 1, F = 0) = 0.2 \\
p(G = 1 | B = 0, F = 1) = 0.2 \\
p(G = 1 | B = 0, F = 0) = 0.1
\]

\[
p(B = 1) = 0.9 \\
p(F = 1) = 0.9
\]

and hence

\[
p(F = 0) = 0.1
\]

\[B = \text{Battery (0=flat, 1=fully charged)}\]

\[F = \text{Fuel Tank (0=empty, 1=full)}\]

\[G = \text{Fuel Gauge Reading (0=empty, 1=full)}\]
“Am I out of fuel?”

\[
p(F = 0|G = 0) = \frac{p(G = 0|F = 0)p(F = 0)}{p(G = 0)} \approx 0.257
\]

Probability of an empty tank increased by observing \(G = 0 \).
“Am I out of fuel?”

\[
p(F = 0|G = 0, B = 0) = \frac{p(G = 0|B = 0, F = 0)p(F = 0)}{\sum_{F \in \{0,1\}} p(G = 0|B = 0, F)p(F)} \\
\simeq 0.111
\]

Probability of an empty tank reduced by observing \(B = 0\).
This referred to as “explaining away”.
D-separation

- A, B, and C are non-intersecting subsets of nodes in a directed graph.
- A path from A to B is blocked if it contains a node such that either
 a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.
- If all paths from A to B are blocked, A is said to be d-separated from B by C.
- If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies $A \perp B \mid C$.
D-separation: Example

\[a \not\perp b \mid c \]

\[a \perp b \mid f \]
D-separation: I.I.D. Data

\[p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) \]

\[p(\mathcal{D}) = \int_{-\infty}^{\infty} p(\mathcal{D}|\mu)p(\mu) \, d\mu \neq \prod_{n=1}^{N} p(x_n) \]
Directed Graphs as Distribution Filters

\[p(x) \rightarrow \text{Directed Graph} \rightarrow DF \]
The Markov Blanket

\[p(x_i \mid x_{\{j \neq i\}}) = \frac{p(x_1, \ldots, x_M)}{\int p(x_1, \ldots, x_M) \, dx_i} = \frac{\prod_k p(x_k \mid pa_k)}{\int \prod_k p(x_k \mid pa_k) \, dx_i} \]

Factors independent of \(x_i\) cancel between numerator and denominator.
Markov Random Fields

$A \perp B | C$

Markov Blanket
Cliques and Maximal Cliques

Clique

Maximal Clique
Joint Distribution

\[p(x) = \frac{1}{Z} \prod_C \psi_C(x_C) \]

where \(\psi_C(x_C) \) is the potential over clique \(C \) and

\[Z = \sum_x \prod_C \psi_C(x_C) \]

is the normalization coefficient; note: \(M K \)-state variables \(\rightarrow K^M \) terms in \(Z \).

Energies and the Boltzmann distribution

\[\psi_C(x_C) = \exp \{-E(x_C)\} \]
Illustration: Image De-Noising (1)

Original Image

Noisy Image
Illustration: Image De-Noising (2)

\[
E(x, y) = h \sum_i x_i - \beta \sum_{\{i,j\}} x_i x_j - \eta \sum_i x_i y_i
\]

\[
p(x, y) = \frac{1}{Z} \exp\{-E(x, y)\}
\]
Illustration: Image De-Noising (3)

Noisy Image

Restored Image (ICM)
Illustration: Image De-Noising (4)

Bayes' Theorem

Restored Image (ICM) Restored Image (Graph cuts)
Converting Directed to Undirected Graphs (1)

\[p(x) = p(x_1)p(x_2|x_1)p(x_3|x_2) \cdots p(x_N|x_{N-1}) \]

\[p(x) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N) \]
Converting Directed to Undirected Graphs (2)

Additional links

\[p(\mathbf{x}) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]
\[= \frac{1}{Z} \psi_A(x_1, x_2, x_3) \psi_B(x_2, x_3, x_4) \psi_C(x_1, x_2, x_4) \]
Directed vs. Undirected Graphs (1)
Directed vs. Undirected Graphs (2)

\[
\begin{align*}
A \nleftrightarrow B & \mid \emptyset \\
A \nleftrightarrow B & \mid C \\
A \nleftrightarrow B & \mid \emptyset \\
C \nleftrightarrow D & \mid A \cup B
\end{align*}
\]
Inference in Graphical Models

\[
p(y) = \sum_{x'} p(y|x')p(x')
\]

\[
p(x|y) = \frac{p(y|x)p(x)}{p(y)}
\]
Inference on a Chain

\[p(\mathbf{x}) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N) \]

\[p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} p(\mathbf{x}) \]
Inference on a Chain

\begin{align*}
p(x_n) & = \frac{1}{Z} \left[\sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \cdots \left[\sum_{x_1} \psi_{1,2}(x_1, x_2) \right] \cdots \right] \\
& \underbrace{\mu_{\alpha}(x_n)}_{\mu_{\alpha}(x_n)} \\
& \underbrace{\sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \cdots \left[\sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N) \right] \cdots}_{\mu_{\beta}(x_n)}
\end{align*}
Inference on a Chain

\[
\begin{align*}
\mu_\alpha(x_n) &= \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \left[\sum_{x_{n-2}} \ldots \right] \\
&= \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \mu_\alpha(x_{n-1}). \\
\mu_\beta(x_n) &= \sum_{x_{n+1}} \psi_{n+1,n}(x_n, x_{n+1}) \left[\sum_{x_{n+2}} \ldots \right] \\
&= \sum_{x_{n+1}} \psi_{n+1,n}(x_n, x_{n+1}) \mu_\beta(x_{n+1}).
\end{align*}
\]
Inference on a Chain

\[\mu_\alpha(x_2) = \sum_{x_1} \psi_{1,2}(x_1, x_2) \quad \mu_\beta(x_{N-1}) = \sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N) \]

\[Z = \sum_{x_n} \mu_\alpha(x_n) \mu_\beta(x_n) \]
Inference on a Chain

To compute local marginals:

• Compute and store all forward messages, $\mu_\alpha(x_n)$.
• Compute and store all backward messages, $\mu_\beta(x_n)$.
• Compute Z at any node x_m
• Compute

$$p(x_n) = \frac{1}{Z} \mu_\alpha(x_n) \mu_\beta(x_n)$$

for all variables required.
Trees

Undirected Tree

Directed Tree

Polytree
Factor Graphs

\[p(x) = f_a(x_1, x_2)f_b(x_1, x_2)f_c(x_2, x_3)f_d(x_3) \]

\[p(x) = \prod_{s} f_s(x_s) \]
Factor Graphs from Directed Graphs

\[p(x) = p(x_1)p(x_2) \]
\[p(x_3|x_1, x_2) \]

\[f(x_1, x_2, x_3) = \]
\[p(x_1)p(x_2)p(3|x_1, x_2) \]

\[f_a(x_1) = p(x_1) \]
\[f_b(x_2) = p(x_2) \]
\[f_c(x_1, x_2, x_3) = p(x_3|x_1, x_2) \]
Factor Graphs from Undirected Graphs

\[
\psi(x_1, x_2, x_3)
\]

\[
f(x_1, x_2, x_3) = \psi(x_1, x_2, x_3)
\]

\[
f_a(x_1, x_2, x_3)f_b(x_2, x_3) = \psi(x_1, x_2, x_3)
\]
The Sum-Product Algorithm (1)

Objective:

i. to obtain an efficient, exact inference algorithm for finding marginals;

ii. in situations where several marginals are required, to allow computations to be shared efficiently.

Key idea: Distributive Law

\[ab + ac = a(b + c) \]
The Sum-Product Algorithm (2)

\[p(x) = \sum_{x \setminus x} p(x) \]

\[p(x) = \prod_{s \in \text{ne}(x)} F_s(x, X_s) \]
The Sum-Product Algorithm (3)

\[
p(x) = \prod_{s \in \text{ne}(x)} \left[\sum_{X_s} F_s(x, X_s) \right] \\
= \prod_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x). \\
\mu_{f_s \rightarrow x}(x) \equiv \sum_{X_s} F_s(x, X_s)
\]
The Sum-Product Algorithm (4)

\[F_s(x, X_s) = f_s(x, x_1, \ldots, x_M) G_1(x_1, X_{s1}) \ldots G_M(x_M, X_{sM}) \]
The Sum-Product Algorithm (5)

\[\mu_{f_s \rightarrow x}(x) = \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \left[\sum_{X_{sm}} G_m(x_m, X_{sm}) \right] \]

\[= \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \rightarrow f_s}(x_m) \]
The Sum-Product Algorithm (6)

\[\mu_{x_m \rightarrow f_s}(x_m) \equiv \sum_{X_{sm}} G_m(x_m, X_{sm}) = \sum_{X_{sm}} \prod_{l \in \text{ne}(x_m) \setminus f_s} F_l(x_m, X_{ml}) = \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \rightarrow x_m}(x_m) \]
The Sum-Product Algorithm (7)

Initialization

\[\mu_{x \rightarrow f}(x) = 1 \]

\[\mu_{f \rightarrow x}(x) = f(x) \]
The Sum-Product Algorithm (8)

To compute local marginals:

- Pick an arbitrary node as root
- Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
- Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
- Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.
\[\tilde{p}(\mathbf{x}) = f_a(x_1, x_2) f_b(x_2, x_3) f_c(x_2, x_4) \]
Sum-Product: Example (2)

\[
\begin{align*}
\mu_{x_1 \rightarrow f_a}(x_1) &= 1 \\
\mu_{f_a \rightarrow x_2}(x_2) &= \sum_{x_1} f_a(x_1, x_2) \\
\mu_{x_4 \rightarrow f_c}(x_4) &= 1 \\
\mu_{f_c \rightarrow x_2}(x_2) &= \sum_{x_4} f_c(x_2, x_4) \\
\mu_{x_2 \rightarrow f_b}(x_2) &= \mu_{f_a \rightarrow x_2}(x_2) \mu_{f_c \rightarrow x_2}(x_2) \\
\mu_{f_b \rightarrow x_3}(x_3) &= \sum_{x_2} f_b(x_2, x_3) \mu_{x_2 \rightarrow f_b}(x_2)
\end{align*}
\]
Sum-Product: Example (3)

\[\mu_{x_3 \rightarrow f_b}(x_3) = 1 \]
\[\mu_{f_b \rightarrow x_2}(x_2) = \sum_{x_3} f_b(x_2, x_3) \]
\[\mu_{x_2 \rightarrow f_a}(x_2) = \mu_{f_b \rightarrow x_2}(x_2) \mu_{f_c \rightarrow x_2}(x_2) \]
\[\mu_{f_a \rightarrow x_1}(x_1) = \sum_{x_2} f_a(x_1, x_2) \mu_{x_2 \rightarrow f_a}(x_2) \]
\[\mu_{x_2 \rightarrow f_c}(x_2) = \mu_{f_a \rightarrow x_2}(x_2) \mu_{f_b \rightarrow x_2}(x_2) \]
\[\mu_{f_c \rightarrow x_4}(x_4) = \sum_{x_2} f_c(x_2, x_4) \mu_{x_2 \rightarrow f_c}(x_2) \]
\[\tilde{p}(x_2) = \mu_{f_a \rightarrow x_2}(x_2) \mu_{f_b \rightarrow x_2}(x_2) \mu_{f_c \rightarrow x_2}(x_2) \]

\[= \left[\sum_{x_1} f_a(x_1, x_2) \right] \left[\sum_{x_3} f_b(x_2, x_3) \right] \left[\sum_{x_4} f_c(x_2, x_4) \right] \]

\[= \sum_{x_1} \sum_{x_3} \sum_{x_4} f_a(x_1, x_2) f_b(x_2, x_3) f_c(x_2, x_4) \]

\[= \sum_{x_1} \sum_{x_3} \sum_{x_4} \tilde{p}(x) \]
The Max-Sum Algorithm (1)

Objective: an efficient algorithm for finding

i. the value \(x^{\text{max}} \) that maximises \(p(x) \);

ii. the value of \(p(x^{\text{max}}) \).

In general, maximum marginals \(\neq \) joint maximum.

<table>
<thead>
<tr>
<th></th>
<th>(x = 0)</th>
<th>(x = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = 0)</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>(y = 1)</td>
<td>0.3</td>
<td>0.0</td>
</tr>
</tbody>
</table>

\[
\arg \max_x p(x, y) = 1 \quad \arg \max_x p(x) = 0
\]
The Max-Sum Algorithm (2)

Maximizing over a chain (max-product)

\[p(x^{max}) = \max_x p(x) = \max_{x_1} \ldots \max_{x_M} p(x) \]

\[= \frac{1}{Z} \max_{x_1} \ldots \max_{x_N} [\psi_{1,2}(x_1, x_2) \cdots \psi_{N-1,N}(x_{N-1}, x_N)] \]

\[= \frac{1}{Z} \max_{x_1} \left[\max_{x_2} \left[\psi_{1,2}(x_1, x_2) \left[\cdots \max_{x_N} \psi_{N-1,N}(x_{N-1}, x_N) \right] \right] \right] \]
The Max-Sum Algorithm (3)

Generalizes to tree-structured factor graph

$$\max_{x} p(x) = \max_{x_n} \prod_{f_s \in \text{ne}(x_n)} \max_{X_s} f_s(x_n, X_s)$$

maximizing as close to the leaf nodes as possible
The Max-Sum Algorithm (4)

Max-Product \rightarrow Max-Sum

For numerical reasons, use

$$\ln \left(\max_x p(x) \right) = \max_x \ln p(x).$$

Again, use distributive law

$$\max(a + b, a + c) = a + \max(b, c).$$
The Max-Sum Algorithm (5)

Initialization (leaf nodes)

\[\mu_{x \rightarrow f}(x) = 0 \quad \mu_{f \rightarrow x}(x) = \ln f(x) \]

Recursion

\[\mu_{f \rightarrow x}(x) = \max_{x_1, \ldots, x_M} \left[\ln f(x, x_1, \ldots, x_M) + \sum_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \rightarrow f}(x_m) \right] \]

\[\phi(x) = \arg \max_{x_1, \ldots, x_M} \left[\ln f(x, x_1, \ldots, x_M) + \sum_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \rightarrow f}(x_m) \right] \]

\[\mu_{x \rightarrow f}(x) = \sum_{l \in \text{ne}(x) \setminus f} \mu_{f_l \rightarrow x}(x) \]
The Max-Sum Algorithm (6)

Termination (root node)

\[
p_{\text{max}} = \max_x \left[\sum_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x) \right]
\]

\[
x_{\text{max}} = \arg \max_x \left[\sum_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x) \right]
\]

Back-track, for all nodes \(i \) with \(l \) factor nodes to the root (\(l=0 \))

\[
x_{i}^{\text{max}} = \phi(x_{i,l-1}^{\text{max}})
\]
The Max-Sum Algorithm (7)

Example: Markov chain

$k = 1$

$k = 2$

$k = 3$

$n - 2$ $n - 1$ n $n + 1$
The Junction Tree Algorithm

• *Exact* inference on general graphs.
• Works by turning the initial graph into a *junction tree* and then running a sum-product-like algorithm.
• *Intractable* on graphs with large cliques.
Loopy Belief Propagation

- Sum-Product on general graphs.
- Initial unit messages passed across all links, after which messages are passed around until convergence (not guaranteed!).
- *Approximate* but *tractable* for large graphs.
- Sometime works well, sometimes not at all.