Illumination-invariant Background
Subtraction by
Yuanqiang Evan Dong

Introduction
Foreground object detection is
an essential task in many image processing and image understanding algorithms,
in particular for video surveillance. Background subtraction is a commonly used
approach to segment out foreground objects from their background. In real world
applications, temporal and spatial changes in pixel values such as due to
shadows, gradual/sudden changes in illumination, etc. make modeling backgrounds
a quite difficult task.
In our work, we propose an
adaptive learning algorithm of multiple subspaces (ALPCA) to handle
sudden/gradual illumination variations for background subtraction.
Results
We tested our proposed
ALPCA using six different datasets: four benchmark datasets and two datasets
that we captured in our ViGIR Lab. The reason for our own datasets is because
none of the benchmark datasets available had changes in illumination that were
drastic and/or sudden enough to test our algorithm. Here is a short description
of each dataset used.
The "Dance"
contains more than one thousand frames of a graphically generated indoor scene
with two dancing characters. While this sequence contains a somewhat sudden
change of illumination, these changes are very subtle, besides this is a
synthetic image sequence. This is part of the VSSN 2006 dataset.
The "Campus"
video sequence is part of the PETS 2001 dataset. We used almost four thousand
frames, including a variety of gradual illumination change (over the period of a
day) and people walking at a reasonably far distance from the camera.
The "Lobby" is an
outdoor video sequence with almost five hundred frames. It is part of the PETS
2004 dataset and it also contains people meeting/chatting at the lobby of the
INRIA Lab, in France.
The "Subway" is
the last of the benchmark dataset used in our tests, and it contains a mix of
natural and artificial illumination sources. It is part of PETS 2006 dataset and
we used more than fourteen hundred of its frames. It was shot at a subway
station and it captured people coming in and out of the station.
The "Sudden-Change"
is the first of our self-created video sequences. It was captured with the
purpose of testing our algorithm for drastic and sudden changes in illumination.
During this five-hundred-frame video sequence, half of the light fixtures are
switched on-and-off separately, creating three different combinations of
lighting conditions. A person moves back and forth in front of the camera.
The "Sudden-Change-Door"
is a sequence similar to the one above, with the addition of a sudden background
change. That is, while some of the lights are switched off, a door in the back
of the room is opened and closed. The light from the hallway floods the room,
creating yet another set of combinations of lighting conditions.
Some Qualitative Results

Video 1: ALPCA

Video 2: ALPCA
Video 2: APCA

Video 3: ALPCA
Video 3: APCA

Video 4: ALPCA

Video 5: ALPCA

Video 6: ALPCA
References
-
Y. Dong and G. N. DeSouza,
"
Adaptive Learning of Multi-Subspace for Foreground Detection under
Illumination Changes ", Journal of Computer Vision and
Image Understanding (accepted)
(manuscript).
- Y. Dong, G. N. DeSouza, and T. X. Han,
"
Illumination Invariant Foreground Detection using Multi-Subspace
Learning",
International Journal of Knowledge-based and Intelligent
Engineering Systems, Vol. 14, Number 1, pp. 31-41, 2010.
|